Cover image for Structure Formation in Astrophysics.
Structure Formation in Astrophysics.
Title:
Structure Formation in Astrophysics.
Author:
Chabrier, Gilles.
ISBN:
9780511515033
Personal Author:
Physical Description:
1 online resource (456 pages)
Series:
Cambridge Contemporary Astrophysics
Contents:
Cover -- Half-title -- Title -- Copyright -- Contents -- Contributors -- Preface -- Part I Physical Processes and Numerical Methods Common to Structure Formations in Astrophysics -- 1 The physics of turbulence -- 1.1 General comments on turbulence -- 1.2 What is the source of turbulence? -- 1.3 What are the main statistical features of turbulence? -- 1.4 How to deal with turbulence? -- 1.4.1 The Reynolds-averaged Navier-Stokes equations -- 1.4.1.1 The concept of turbulent viscosity -- 1.4.1.2 The mixing-length model (zero-equation model) -- 1.4.1.3 One-equation model: the k-model -- 1.4.1.4 Two-equation model: the (k-ε) model -- 1.4.1.5 A general comment -- 1.4.2 The Large-eddy Simulation of turbulent flows -- 1.4.2.1 The general context -- 1.4.2.2 The Smagorinsky model -- 1.4.2.3 The shear-improved Smagorinsky model -- References -- 2 The numerical simulation of turbulence -- 2.1 Fundamentals -- 2.2 Supersonic turbulence -- 2.3 Self-gravitating turbulence -- 2.4 Magnetohydrodynamic turbulence -- 2.5 Perspectives -- References -- 3 Numerical methods for radiation magnetohydrodynamics in astrophysics -- Abstract -- 3.1 Introduction -- 3.2 Magnetohydrodynamic algorithms: the Athena code -- 3.2.1 Introduction -- 3.2.2 The equations of MHD -- 3.2.3 Discretization -- 3.2.4 Spatial reconstruction -- 3.2.5 Riemann solvers -- 3.2.6 Constrained transport -- 3.2.7 Directionally unsplit integrators -- 3.2.8 Tests -- 3.2.8.1 Linear wave convergence -- 3.2.8.2 Propagation of circularly polarized Alfvén wave -- 3.2.8.3 Advection of a field loop -- 3.2.8.4 Shocktube rotated to the grid -- 3.2.8.5 MHD blast wave -- 3.3 Radiation-hydrodynamic algorithms: the Orion code -- 3.3.1 Limiting regimes of radiation hydrodynamics -- 3.3.2 The equations of radiation hydrodynamics -- 3.3.3 The relative importance of higher-order terms.

3.3.3.1 Comparison to lower-order equations -- 3.3.3.2 Comparison to comoving frame formulations -- 3.3.4 Radiation hydrodynamics in the static diffusion limit -- 3.3.5 Advantages of the method -- 3.3.6 Tests in the optically thin and thick limits -- 3.3.6.1 Radiating blast wave -- 3.3.6.2 Radiation pressure tube -- 3.3.6.3 Radiation-inhibited Bondi accretion -- 3.4 Adaptive mesh refinement -- 3.5 Conclusions and future directions -- Acknowledgements -- References -- 4 The role of jets in the formation of planets, stars and galaxies -- Abstract -- 4.1 Introduction -- 4.2 Jets in diverse systems -- 4.2.1 Protostellar objects -- 4.2.2 Jovian planets -- 4.2.3 Black holes -- 4.3 Theory of disk winds -- 4.3.1 Conservation laws and jet kinematics -- 4.3.1.1 Conservation of mass and magnetic flux -- 4.3.1.2 Conservation of angular momentum -- 4.3.1.3 Conservation of energy -- 4.3.2 Angular momentum extraction -- 4.3.3 Jet power and universality -- 4.3.4 Jet collimation -- 4.4 Gravitational collapse, disks and the origin of outflows -- 4.5 Feedback from collimated protostellar jets? -- 4.6 Relativistic jets: theory -- 4.7 SRMHD and GRMHD simulations -- 4.8 Non-relativistic versus relativistic MHD jets -- Acknowledgements -- References -- 5 Advanced numerical methods in astrophysical fluid dynamics -- Abstract -- PART I -- 5.1 Numerical methods in AFD -- 5.2 Timescales in AFD -- 5.3 Numerical methods: a unification approach -- 5.3.1 Example -- 5.4 Converting time-explicit into implicit solution methods -- 5.5 Summary -- PART II -- 5.6 (Magneto-)hydrodynamic Boltzmann solvers -- 5.7 Why Boltzmann Solvers? -- 5.8 Equations and implementation: Proteus -- 5.9 Test cases and applications -- 5.9.1 1D: resistively damped linear Alfvén wave -- 5.9.2 1D: linear Alfvén waves in weakly ionized plasmas -- 5.9.3 2D: current sheet -- 5.9.4 2D: advection of a field loop.

5.10 Summary -- References -- Part II: Structure and Star Formation in the Primordial Universe -- 6 New frontiers in cosmology and galaxy formation: challenges for the future -- Abstract -- 6.1 Introduction -- 6.2 Constituents of the universe -- 6.2.1 Dark matter -- 6.2.2 Dark energy -- 6.2.2.1 Type Ia SNe -- 6.2.2.4 Galaxy clusters -- 6.3 First light and cosmic reionization -- 6.4 Galaxy formation -- 6.4.1 Disk galaxies -- 6.4.2 Early-type galaxies -- 6.4.3 Feedback -- 6.4.4 Downsizing -- 6.5 Where next? -- 6.5.1 ELTs and JWST -- 6.5.2 21-cm facilities -- 6.5.3 Theory -- 6.6 Summary -- References -- 7 Galaxy formation physics -- 7.1 Introduction -- 7.2 Fast versus slow structure formation -- 7.3 The importance of H2 cooling in early galaxy formation -- 7.4 Simulating a 108M galaxy one star at a time -- 7.5 A minimum mass for galaxies? -- 7.6 The cosmic star formation rate -- 7.7 The role of diffuse gas accretion -- 7.8 The role of AGN feedback -- 7.9 Star formation in quiescent disk galaxies -- 7.10 Conclusions -- Acknowledgements -- References -- 8 First stars: formation, evolution and feedback effects -- Abstract -- 8.1 Introduction -- 8.1.1 When did the cosmic dark ages end? -- 8.1.2 What is the nature of the feedback exerted by the first stars on their surroundings? -- 8.2 Population III star formation -- 8.2.1 First-generation stars -- 8.2.1.1 How did the first stars form? -- 8.2.1.2 How massive were the first stars? -- 8.2.1.3 Can a Pop III star ever reach this asymptotic mass limit? -- 8.2.2 Second-generation stars -- 8.3 Structure, evolution and nucleosynthesis -- 8.3.1 Structure and evolution -- 8.3.1.1 Hydrogen burning -- 8.3.1.2 Mass loss -- 8.3.2 The fates of the first stars -- 8.3.3 Very massive stars and pair instability supernovae -- 8.3.4 Nucleosynthesis of the first stars -- 8.3.5 The remnants of the first stars.

8.4 Feedback effects -- 8.4.1 Radiative feedback -- 8.4.1.1 Photoionization/evaporation -- 8.4.1.2 H2 photodissociation -- 8.4.1.3 Photoheating filtering -- 8.4.2 Chemical feedback -- 8.4.3 Mechanical feedback and IGM metal enrichment -- 8.4.3.1 Are metals in galaxies or in the IGM? -- Acknowledgements -- References -- Part III Contemporary Star and Brown Dwarf Formation -- 9 Diffuse interstellar medium and the formation of molecular clouds -- 9.1 Introduction -- 9.2 Large-scale interstellar medium -- 9.3 Neutral interstellar medium -- 9.3.1 Thermal balance and thermal instability -- 9.3.2 Dynamical formation of cold atomic clouds -- 9.3.3 Front stability and thermal fragmentation -- 9.3.4 Colliding flows and thermally bistable turbulence -- 9.3.5 Dense structure statistics in thermally bistable turbulent flows -- 9.3.6 Influence of the magnetic field -- 9.4 Formation of molecular clouds -- 9.4.1 Context -- 9.4.2 Numerical results -- 9.4.3 Formation of molecular hydrogen -- 9.4.4 Discussion and implications -- References -- 10 The formation of distributed and clustered stars in molecular clouds -- 10.1 Introduction -- 10.2 Observations of clustered and distributed populations in molecular clouds -- 10.2.1 Molecular cloud surveys -- 10.2.2 A gallery of embedded clusters -- 10.2.3 The distribution of protostars in embedded clusters -- 10.2.4 The evolution of embedded clusters: an observational perspective -- 10.3 Local theory of distributed and clustered star formation -- 10.3.1 Ambipolar diffusion and distributed star formation -- 10.3.2 Turbulence, gravity and cluster formation -- 10.3.3 Cluster formation in protostellar turbulence -- 10.4 Global theory of star formation in turbulent clouds -- 10.4.1 Questions and difficulties -- 10.4.2 A turbulent cascade origin of the scaling -- 10.4.3 Interaction of turbulence and self-gravity.

10.4.4 Self-regulated star formation -- 10.5 Concluding remarks -- Acknowledgements -- References -- 11 The formation and evolution of prestellar cores -- 11.1 Introduction: dense cores and the origin of the IMF -- 11.2 Link between the prestellar CMF and the IMF -- 11.3 Core formation models versus observational constraints -- 11.3.1 Theoretical description of cloud fragmentation models -- 11.3.2 Observational diagnostics -- 11.3.2.1 Core formation efficiency and spatial distribution from surveys -- 11.3.2.2 Core lifetimes -- 11.3.2.3 Magnetic field measurements -- 11.3.2.4 Radial density structure -- 11.3.2.5 Velocity structure -- 11.4 Collapse and subfragmentation of prestellar cores -- 11.4.1 Core collapse models: thermodynamics -- 11.4.1.1 Dynamical roles of the first and second protostellar cores -- 11.4.2 Resistive MHD effects and onset of outflows -- 11.4.2.1 MHD modelling with resistivity -- 11.5 Conclusions: proposed view for the star formation process -- References -- 12 Models for the formation of massive stars -- Abstract -- 12.1 Introduction -- 12.2 The core accretion model -- 12.2.1 The model -- 12.2.2 Observational tests -- 12.2.2.1 Core and stellar mass functions -- 12.2.2.2 Core spatial and kinematic distributions -- 12.2.2.3 The star formation rate -- 12.2.3 Massive stars in the core accretion model -- 12.2.3.1 Initial fragmentation -- 12.2.3.2 Massive protostellar disks and companion formation -- 12.3 The competitive accretion model -- 12.3.1 Initial fragmentation -- 12.3.2 Accretion in a cluster potential -- 12.3.3 Dynamics of accretion -- 12.3.4 Limitations of competitive accretion -- 12.3.5 Predictions -- 12.3.6 Observational comparisons -- 12.4 Challenges in both models: feedback -- 12.4.1 Radiation pressure -- et al. 1994). Inside this layer, the opacity of the gas is small and radiation streams -- 12.4.2 Ionization.

12.5 Future directions.
Abstract:
Unique reference for graduate students and researchers addressing common problems and methods in studying galaxy, star and planet formation.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: