
Fundamentals of Seismic Loading on Structures.
Title:
Fundamentals of Seismic Loading on Structures.
Author:
Sen, Tapan K.
ISBN:
9780470742358
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (406 pages)
Contents:
Fundamentals of Seismic Loading on Structures -- Contents -- Preface -- Acknowledgements -- 1 Introduction to Earthquakes -- 1.1 A Historical Perspective -- 1.1.1 Seismic Areas of the World -- 1.1.2 Types of Failure -- 1.1.3 Fault Movement and its Destructive Action -- 1.2 The Nature of Earthquakes -- 1.3 Plate Tectonics -- 1.3.1 Types of Plate Boundaries -- 1.3.2 Convergent and Divergent Boundaries -- 1.3.3 Seismicity and Plate Tectonics -- 1.4 Focus and Epicentre -- 1.5 Seismic Waves -- 1.5.1 Body Waves -- 1.5.2 Surface Waves -- 1.6 Seismometers -- 1.6.1 Early Seismographs -- 1.6.2 Modern Developments -- 1.6.3 Locating the Epicentre -- 1.7 Magnitude and Intensity -- 1.7.1 Magnitude Scales -- 1.7.2 Seismic Moment -- 1.7.3 Intensity Scales -- 1.8 Reid's Elastic Rebound Theory -- 1.9 Significant Milestones in Earthquake Engineering -- 1.10 Seismic Tomography -- 1.10.1 The Challenges Ahead -- 1.11 References -- 2 Single Degree of Freedom Systems -- 2.1 Introduction -- 2.2 Free Vibration -- 2.2.1 Equations of Motion with Damping -- 2.2.2 Damping Ratio -- 2.2.3 Treatment of Initial Conditions -- 2.3 Periodic Forcing Function -- 2.3.1 Magnification Factors -- 2.3.2 Damping -- 2.3.3 Support Motion -- 2.4 Arbitrary Forcing Function -- 2.4.1 Duhamel Integral -- 2.4.2 Numerical Evaluation -- 2.4.3 Worked Example - Duhamel Integral -- 2.5 References -- 3 Systems with Many Degrees of Freedom -- 3.1 Introduction -- 3.2 Lumped Parameter Systems with Two Degrees of Freedom -- 3.3 Lumped Parameter Systems with more than Two Degrees of Freedom -- 3.3.1 Free Vibration -- 3.3.2 A Worked Example (Two degrees of Freedom System) -- 3.3.3 Normalization of Mode Shapes -- 3.3.4 Orthogonality of Mode Shapes -- 3.3.5 Worked Example - Orthogonality Check -- 3.4 Mode Superposition -- 3.4.1 Use of Normal or Generalized Coordinates -- 3.5 Damping Orthogonality.
3.6 Non-linear Dynamic Analysis -- 3.6.1 Introduction -- 3.6.2 Incremental Integration Process -- 3.6.3 Numerical Procedures for Integration -- 3.6.4 Estimate of Errors -- 3.6.5 Houbolt's Method -- 3.6.6 Explicit and Implicit Scheme -- 3.6.7 Minimum Time Step t (Explicit Integration Scheme) -- 3.7 References -- 4 Basics of Random Vibrations -- 4.1 Introduction -- 4.2 Concepts of Probability -- 4.2.1 Random Variable Space -- 4.2.2 Gaussian or Normal Distribution -- 4.2.3 Worked Example with Standard Normal Variable -- 4.3 Harmonic Analysis -- 4.3.1 Introduction -- 4.3.2 Fourier Series (Robson, 1963) -- 4.3.3 Fourier Integrals (Robson, 1963, with permission) -- 4.3.4 Spectral Density (Robson, 1963) -- 4.4 Numerical Integration Scheme for Frequency Content -- 4.4.1 Introducing Discrete Fourier Transform (DFT) -- 4.5 A Worked Example (Erzincan, 1992) -- 4.6 References -- 5 Ground Motion Characteristics -- 5.1 Characteristics of Ground Motion -- 5.1.1 Ground Motion Particulars -- 5.1.2 After Shocks and Before Shocks -- 5.1.3 Earthquake Source Model -- 5.1.4 Empirical Relations of Source Parameters -- 5.2 Ground Motion Parameters -- 5.2.1 The Nature and Attenuation of Ground Motion -- 5.2.2 PGA and Modified Mercalli Intensity (MMI) -- 5.2.3 Engineering Models of Attenuation Relationships -- 5.2.4 Next Generation Attenuation (NGA) Models for Shallow Crustal Earthquakes in Western United States (2008) -- 5.3 References -- 6 Introduction to Response Spectra -- 6.1 General Concepts -- 6.1.1 A Designer's Perspective -- 6.1.2 A Practical Way Forward -- 6.1.3 Constructing Tripartite Plots -- 6.2 Design Response Spectra -- 6.2.1 AWorked Example: An MDOF System Subjected to Earthquake Loading -- 6.3 Site Dependent Response Spectra -- 6.3.1 The Design Process -- 6.3.2 Practical Example: Construction of a Site Dependent Response Spectrum.
6.4 Inelastic Response Spectra -- 6.4.1 Response Spectra: A Cautionary Note -- 6.5 References -- 7 Probabilistic Seismic Hazard Analysis -- 7.1 Introduction -- 7.1.1 Seismic Hazard Analysis (SHA) -- 7.1.2 Features of PSHA -- 7.2 Basic Steps in Probabilistic Seismic Hazard Analysis (PSHA) -- 7.2.1 Historical Seismicity -- 7.2.2 Geology, Tectonics, Identification of Earthquake Source and the Geometry -- 7.2.3 Modelling Recurrence Laws -- 7.2.4 Gutenberg-Richter Recurrence Law -- 7.2.5 Alternative Models -- 7.2.6 Why the Gutenberg-Richter Model? -- 7.2.7 Ground Motion Parameter (peak acceleration, velocity etc.) -- 7.2.8 Local Soil Conditions -- 7.2.9 Temporal Model (or the arrival process) -- 7.2.10 Poisson Model -- 7.3 Guide to Analytical Steps -- 7.3.1 Multiple Point Sources -- 7.3.2 Area Source -- 7.3.3 Line Source -- 7.4 PSHA as Introduced by Cornell -- 7.4.1 Line Source Illustration Problem (Cornell, 1968) -- 7.5 Monte Carlo Simulation Techniques -- 7.5.1 Monte Carlo Simulation Process - An Insight -- 7.5.2 Example: Point Source (extracted from Cornell, 1968) -- 7.6 Construction of Uniform Hazard Spectrum -- 7.6.1 Monte Carlo Simulation Plots for Peak Ground Acceleration -- 7.6.2 Procedure for Construction of Uniform Hazard Response Spectrum -- 7.6.3 Further Attenuation Equations -- 7.7 Further Computational Considerations -- 7.7.1 De-aggregation - An Introduction -- 7.7.2 Computational Scheme for De-aggregation -- 7.7.3 Logic-Tree Simulation - An Introduction -- 7.7.4 Lest We Forget . . . -- 7.8 References -- 8 Code Provisions -- 8.1 Introduction -- 8.1.1 Historical Development -- 8.2 Static Force Procedure -- 8.2.1 Base Shear Method -- 8.3 IBC 2006 -- 8.3.1 Introducing Mapped Spectral Accelerations -- 8.3.2 Dynamic Analysis Procedures -- 8.4 Eurocode 8 -- 8.4.1 A Worked Example -- 8.5 A Worked Example (IBC 2000) -- 8.5.1 General.
8.5.2 Design Criteria -- 8.5.3 Design Basis -- 8.5.4 Gravity Loads and Load Combinations -- 8.5.5 Gravity Load Analysis -- 8.5.6 Load Combinations For Design -- 8.5.7 Equivalent Lateral Force Procedure (1617.4) -- 8.5.8 Vertical Distribution of Base Shear (1617.4.3) -- 8.5.9 Lateral Analysis -- 8.5.10 Modification of Approximate Period -- 8.5.11 Revised Design Base Shear -- 8.5.12 Results of Analysis -- 8.5.13 Storey Drift Limitation -- 8.5.14 P − Effects -- 8.5.15 Redundancy Factor, ρ, (1617.2) -- 8.5.16 Dynamic Analysis Procedure (response spectrum analysis) -- 8.5.17 Mode Shapes -- 8.5.18 Verification of Results from SAP 2000 -- 8.5.19 Lm and Mm for each mode shape -- 8.5.20 Modal Seismic Design Coefficients, Csm -- 8.5.21 Base Shear using Modal Analysis -- 8.5.22 Design Base Shear using Static Procedure -- 8.5.23 Scaling of Elastic Response Parameters for Design -- 8.5.24 Distribution of Base Shear -- 8.5.25 Lateral Analysis -- 8.5.26 Storey Drift Limitation -- 8.5.27 P − Effects -- 8.5.28 Redundancy Factor, ρ -- 8.6 References -- 9 Inelastic Analysis and Design Concepts (with Particular Reference to H-Sections) -- 9.1 Introduction -- 9.2 Behaviour of Beam Columns -- 9.2.1 Short or Stocky Beam Column -- 9.2.2 Long or Intermediate Length Beam Column -- 9.3 Full Scale Laboratory Tests -- 9.3.1 Test Results -- 9.3.2 Mode of Failure -- 9.3.3 Experimental Plots -- 9.4 Concepts and Issues: Frames Subjected to Seismic Loading -- 9.5 Proceeding with Dynamic Analysis (MDOF systems) -- 9.5.1 Lateral Torsional Buckling -- 9.5.2 Column Strength Curves -- 9.5.3 Dynamic Analysis -- 9.6 Behaviour of Steel Members under Cyclic Loading -- 9.6.1 FE Analysis -- 9.6.2 A Note on Connections -- 9.6.3 A Note on the Factors Affecting the Strength of Columns -- 9.7 Energy Dissipating Devices -- 9.7.1 Introduction -- 9.7.2 Current Practice.
9.7.3 Damping Devices in Use -- 9.7.4 Analytical Guidelines Currently Available -- 9.8 References -- 10 Soil-Structure Interaction Issues -- 10.1 Introduction -- 10.2 Definition of the Problem -- 10.2.1 Important Features of Soil-Structure Interaction -- 10.2.2 Ground Responses Observed During Earthquakes -- 10.3 Damaging Effects due to Amplification -- 10.3.1 Mexico City (1985) Earthquake -- 10.3.2 Loma Prieta (1989) Earthquake -- 10.4 Damaging Effects Due to Liquefaction -- 10.4.1 Design Implications for Piles due to Liquefaction -- 10.5 References -- 11 Liquefaction -- 11.1 Definition and Description -- 11.1.1 Geotechnical Aspects of Liquefaction -- 11.2 Evaluation of Liquefaction Resistance -- 11.2.1 Analytical Procedure - Empirical Formulation (Seed and Idriss, 1971) -- 11.2.2 A Simplified Method (Seed and Idriss, 1971) -- 11.3 Liquefaction Analysis - Worked Example -- 11.3.1 Problem Definition -- 11.3.2 Case Study - Using Field Data -- 11.4 SPT Correlation for Assessing Liquefaction -- 11.4.1 Current State of the Art -- 11.4.2 Most Recent Work -- 11.4.3 Worked Example with SPT Procedure (Idriss and Boulanger, 2004) -- 11.5 Influence of Fines Content -- 11.6 Evaluation of Liquefaction Potential of Clay (cohesive) Soil -- 11.6.1 Fresh Evidence of Liquefaction of Cohesive Soils -- 11.7 Construction of Foundations of Structures in the Earthquake Zones Susceptible to Liquefaction -- 11.8 References -- 12 Performance Based Seismic Engineering - An Introduction -- 12.1 Preamble -- 12.2 Background to Current Developments -- 12.2.1 Efforts in the USA -- 12.2.2 Efforts in Japan -- 12.2.3 Efforts in Europe -- 12.3 Performance-Based Methodology -- 12.3.1 Performance Objectives -- 12.3.2 Performance Levels -- 12.3.3 Performance Objectives -- 12.3.4 Hazard Levels (design ground motions) -- 12.4 Current Analysis Procedures -- 12.4.1 ATC Commentary.
12.4.2 Displacement Design Procedures.
Abstract:
Professor Patrick J. Dowling CBE, DL, DSc, FIStructE, Hon MRIA, FIAE, FREng, FRS Chairman, British Association for the Advancement of Science Emeritus Professor and Retired Vice Chancellor, University of Surrey.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View