
Wind Energy Generation : Modelling and Control.
Title:
Wind Energy Generation : Modelling and Control.
Author:
Jenkins, Nick.
ISBN:
9780470748237
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (289 pages)
Contents:
Wind Energy Generation -- Contents -- About the Authors -- Preface -- Acronyms and Symbols -- 1 Electricity Generation from Wind Energy -- 1.1 Wind Farms -- 1.2 Wind Energy-generating Systems -- 1.2.1 Wind Turbines -- 1.2.2 Wind Turbine Architectures -- 1.3 Wind Generators Compared with Conventional Power Plant -- 1.3.1 Local Impacts -- 1.3.2 System-wide Impacts -- 1.4 Grid Code Regulations for the Integration of Wind Generation -- References -- 2 Power Electronics for Wind Turbines -- 2.1 Soft-starter for FSIG Wind Turbines -- 2.2 Voltage Source Converters (VSCs) -- 2.2.1 The Two-level VSC -- 2.2.2 Square-wave Operation -- 2.2.3 Carrier-based PWM (CB-PWM) -- 2.2.4 Switching Frequency Optimal PWM (SFO-PWM) -- 2.2.5 Regular and Non-regular Sampled PWM (RS-PWM and NRS-PWM) -- 2.2.6 Selective Harmonic Elimination PWM (SHEM) -- 2.2.7 Voltage Space Vector Switching (SV-PWM) -- 2.2.8 Hysteresis Switching -- 2.3 Application of VSCs for Variable-speed Systems -- 2.3.1 VSC with a Diode Bridge -- 2.3.2 Back-to-Back VSCs -- References -- 3 Modelling of Synchronous Generators -- 3.1 Synchronous Generator Construction -- 3.2 The Air-gap Magnetic Field of the Synchronous Generator -- 3.3 Coil Representation of the Synchronous Generator -- 3.4 Generator Equations in the dq Frame -- 3.4.1 Generator Electromagnetic Torque -- 3.5 Steady-state Operation -- 3.6 Synchronous Generator with Damper Windings -- 3.7 Non-reduced Order Model -- 3.8 Reduced-order Model -- 3.9 Control of Large Synchronous Generators -- 3.9.1 Excitation Control -- 3.9.2 Prime Mover Control -- References -- 4 Fixed-speed Induction Generator (FSIG)-based Wind Turbines -- 4.1 Induction Machine Construction -- 4.1.1 Squirrel-cage Rotor -- 4.1.2 Wound Rotor -- 4.2 Steady-state Characteristics -- 4.2.1 Variations in Generator Terminal Voltage -- 4.3 FSIG Configurations for Wind Generation.
4.3.1 Two-speed Operation -- 4.3.2 Variable-slip Operation -- 4.3.3 Reactive Power Compensation Equipment -- 4.4 Induction Machine Modelling -- 4.4.1 FSIG Model as a Voltage Behind a Transient Reactance -- 4.5 Dynamic Performance of FSIG Wind Turbines -- 4.5.1 Small Disturbances -- 4.5.2 Performance During Network Faults -- References -- 5 Doubly Fed Induction Generator (DFIG)-based Wind Turbines -- 5.1 Typical DFIG Configuration -- 5.2 Steady-state Characteristics -- 5.2.1 Active Power Relationships in the Steady State -- 5.2.2 Vector Diagram of Operating Conditions -- 5.3 Control for Optimum Wind Power Extraction -- 5.4 Control Strategies for a DFIG -- 5.4.1 Current-mode Control (PVdq) -- 5.4.2 Rotor Flux Magnitude and Angle Control -- 5.5 Dynamic Performance Assessment -- 5.5.1 Small Disturbances -- 5.5.2 Performance During Network Faults -- References -- 6 Fully Rated Converter-based (FRC) Wind Turbines -- 6.1 FRC Synchronous Generator-based (FRC-SG) Wind Turbine -- 6.1.1 Direct-driven Wind Turbine Generators -- 6.1.2 Permanent Magnets Versus Electrically Excited Synchronous Generators -- 6.1.3 Permanent Magnet Synchronous Generator -- 6.1.4 Wind Turbine Control and Dynamic Performance Assessment -- 6.2 FRC Induction Generator-based (FRC-IG) Wind Turbine -- 6.2.1 Steady-state Performance -- 6.2.2 Control of the FRC-IG Wind Turbine -- 6.2.3 Performance Characteristics of the FRC-IG Wind Turbine -- References -- 7 Influence of Rotor Dynamics on Wind Turbine Operation -- 7.1 Blade Bending Dynamics -- 7.2 Derivation of Three-mass Model -- 7.2.1 Example: 300 kW FSIG Wind Turbine -- 7.3 Effective Two-mass Model -- 7.4 Assessment of FSIG and DFIG Wind Turbine Performance -- Acknowledgement -- References -- 8 Influence of Wind Farms on Network Dynamic Performance -- 8.1 Dynamic Stability and its Assessment.
8.2 Dynamic Characteristics of Synchronous Generation -- 8.3 A Synchronizing Power and Damping Power Model of a Synchronous Generator -- 8.4 Influence of Automatic Voltage Regulator on Damping -- 8.5 Influence on Damping of Generator Operating Conditions -- 8.6 Influence of Turbine Governor on Generator Operation -- 8.7 Transient Stability -- 8.8 Voltage Stability -- 8.9 Generic Test Network -- 8.10 Influence of Generation Type on Network Dynamic Stability -- 8.10.1 Generator 2 - Synchronous Generator -- 8.10.2 Generator 2 - FSIG-based Wind Farm -- 8.10.3 Generator 2 - DFIG-based Wind Farm (PVdq Control) -- 8.10.4 Generator 2 - DFIG-based Wind Farm (FMAC Control) -- 8.10.5 Generator 2 - FRC-based Wind Farm -- 8.11 Dynamic Interaction of Wind Farms with the Network -- 8.11.1 FSIG Influence on Network Damping -- 8.11.2 DFIG Influence on Network Damping -- 8.12 Influence of Wind Generation on Network Transient Performance -- 8.12.1 Generator 2 - Synchronous Generator -- 8.12.2 Generator 2 - FSIG Wind Farm -- 8.12.3 Generator 2 - DFIG Wind Farm -- 8.12.4 Generator 2 - FRC Wind Farm -- References -- 9 Power Systems Stabilizers and Network Damping Capability of Wind Farms -- 9.1 A Power System Stabilizer for a Synchronous Generator -- 9.1.1 Requirements and Function -- 9.1.2 Synchronous Generator PSS and its Performance Contributions -- 9.2 A Power System Stabilizer for a DFIG -- 9.2.1 Requirements and Function -- 9.2.2 DFIG-PSS and its Performance Contributions -- 9.3 A Power System Stabilizer for an FRC Wind Farm -- 9.3.1 Requirements and Functions -- 9.3.2 FRC-PSS and its Performance Contributions -- References -- 10 The Integration of Wind Farms into the Power System -- 10.1 Reactive Power Compensation -- 10.1.1 Static Var Compensator (SVC) -- 10.1.2 Static Synchronous Compensator (STATCOM) -- 10.1.3 STATCOM and FSIG Stability -- 10.2 HVAC Connections.
10.3 HVDC Connections -- 10.3.1 LCC-HVDC -- 10.3.2 VSC-HVDC -- 10.3.3 Multi-terminal HVDC -- 10.3.4 HVDC Transmission - Opportunities and Challenges -- 10.4 Example of the Design of a Submarine Network -- 10.4.1 Beatrice Offshore Wind Farm -- 10.4.2 Onshore Grid Connection Points -- 10.4.3 Technical Analysis -- 10.4.4 Cost Analysis -- 10.4.5 Recommended Point of Connection -- Acknowledgement -- References -- 11 Wind Turbine Control for System Contingencies -- 11.1 Contribution of Wind Generation to Frequency Regulation -- 11.1.1 Frequency Control -- 11.1.2 Wind Turbine Inertia -- 11.1.3 Fast Primary Response -- 11.1.4 Slow Primary Response -- 11.2 Fault Ride-through (FRT) -- 11.2.1 FSIGs -- 11.2.2 DFIGs -- 11.2.3 FRCs -- 11.2.4 VSC-HVDC with FSIG Wind Farm -- 11.2.5 FRC Wind Turbines Connected Via a VSC-HVDC -- References -- Appendix A: State-Space Concepts and Models -- Appendix B: Introduction to Eigenvalues and Eigenvectors -- Appendix C: Linearization of State Equations -- Appendix D: Generic Network Model Parameters -- Index.
Abstract:
With increasing concern over climate change and the security of energy supplies, wind power is emerging as an important source of electrical energy throughout the world. Modern wind turbines use advanced power electronics to provide efficient generator control and to ensure compatible operation with the power system. Wind Energy Generation describes the fundamental principles and modelling of the electrical generator and power electronic systems used in large wind turbines. It also discusses how they interact with the power system and the influence of wind turbines on power system operation and stability. Key features: Includes a comprehensive account of power electronic equipment used in wind turbines and for their grid connection. Describes enabling technologies which facilitate the connection of large-scale onshore and offshore wind farms. Provides detailed modelling and control of wind turbine systems. Shows a number of simulations and case studies which explain the dynamic interaction between wind power and conventional generation.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View