Cover image for Inorganic Geochemistry : Applications to Petroleum Geology.
Inorganic Geochemistry : Applications to Petroleum Geology.
Title:
Inorganic Geochemistry : Applications to Petroleum Geology.
Author:
Robinson, A. G.
ISBN:
9781444313970
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (268 pages)
Contents:
Inorganic Geochemistry: Applications to Petroleum Geology -- Contents -- Preface -- Acknowledgements -- Chapter 1: Introduction -- 1.1 Background -- 1.2 How is inorganic geochemistry applied to petroleum geology? -- 1.3 What is in this book -- 1.4 Overview -- 1.5 What is not in this book -- Chapter 2: Textural and Mineralogical Analysis -- 2.1 Introduction -- 2.2 Transmitted light microscopy -- 2.2.1 Introduction -- 2.2.2 Sample preparation -- 2.2.3 Mineral identification and differentiation of detrital grains from diagenetic cements -- 2.2.4 Mineralogical quantification -- 2.2.5 Mineral paragenesis -- 2.2.6 Porosity description -- 2.3 Cathodoluminescence microscopy -- 2.3.1 Introduction -- 2.3.2 Analytical techniques -- 2.3.3 Sample preparation -- 2.3.4 Applications of CL -- 2.4 Ultraviolet fluorescence microscopy -- 2.4.1 Introduction -- 2.4.2 Applications of UVF -- 2.5 Scanning electron microscopy -- 2.5.1 Introduction -- 2.5.2 Sample preparation -- 2.5.3 Applications of emission mode SEM -- 2.5.4 Applications of backscatter mode SEM -- 2.6 Transmission electron microscopy -- 2.6.1 Introduction -- 2.6.2 Sample preparation -- 2.6.3 Applications of TEM -- 2.7 X-ray diffraction -- 2.7.1 Introduction -- 2.7.2 Sample preparation -- 2.7.3 Applications of XRD -- 2.8 Thermogravimetry-evolved water analysis -- 2.8.1 Introduction -- 2.8.2 Analytical techniques -- 2.8.3 Applications of TG-EWA -- 2.9 Pore image analysis -- 2.9.1 Introduction -- 2.9.2 Analytical techniques -- 2.9.3 Applications of PIA -- Chapter 3: Fluid Inclusions -- 3.1 Introduction -- 3.2 Relationship to host mineral -- 3.3 Microthermometry I - principles -- 3.3.1 Introduction -- 3.3.2 Melting temperatures of solid phases -- 3.3.3 Homogenization temperatures -- 3.3.4 Data collection - precision and accuracy -- 3.4 Microthermometry II - interpretation -- 3.4.1 Introduction.

3.4.2 Stretching and leakage - a terminal problem? -- 3.4.3 Pressure corrections: can we and should we? -- 3.4.4 Example 1: calcite filled fractures, Little Knife Field, North Dakota -- 3.4.5 Example 2: mineral cementation, offshore Angola -- 3.5 Non-destructive analysis of individual inclusions -- 3.5.1 Introduction -- 3.5.2 Laser Raman spectroscopy -- 3.5.3 Fourier transform infrared spectroscopy -- 3.5.4 Ultraviolet fluorescence -- 3.6 Bulk analysis of petroleum inclusions -- 3.6.1 Introduction -- 3.6.2 Isolation of a fluid sample -- 3.6.3 Gas chromatography -- 3.6.4 Gas chromatography-mass spectrometry -- Chapter 4: Stable Isotopes -- 4.1 Introduction -- 4.2 Principles -- 4.2.1 Terminology -- 4.2.2 Isotope fractionation -- 4.2.3 Isotope geothermometry -- 4.2.4 Analytical methods -- 4.2.5 Data interpretation: general problems -- 4.3 Oxygen and hydrogen -- 4.3.1 Water -- 4.3.2 Silicates -- 4.3.3 Example 1: quartz cement in a Pennsylvanian sandstone, West Tuscola Field, north-central Texas -- 4.3.4 Example 2: illite cement in fluvial sandstone, Brent Group, Northern North Sea -- 4.3.5 Carbonates -- 4.3.6 Sulphates -- 4.4 Carbon -- 4.4.1 Principles -- 4.4.2 Example 3: calcite cement in a Miocene carbonate reservoir, Liuhua Field, Pearl River Mouth Basin, offshore China -- 4.5 Sulphur -- 4.5.1 Principles -- 4.5.2 Example 4: thermochemical sulphate reduction in a carbonate reservoir, deep Foothills region, Alberta, Canada -- Chapter 5: Radiogenic Isotopes -- 5.1 Introduction -- 5.2 Radiogenic isotope systems -- 5.3 K-Ar dating -- 5.3.1 Principles -- 5.3.2 Analytical methods: precision and accuracy -- 5.3.3 Assumptions -- 5.3.4 Example 1: illite cement in aeolian sandstone, Rotliegend Group, Southern North Sea -- 5.3.5 Example 2: illite cement in fluvial sandstone, Brent Group, Northern North Sea -- 5.3.6 Example 3: K-feldspar cement, offshore Angola.

5.4 40Ar- 39Ar dating -- 5.4.1 Principles -- 5.4.2 Example 4: chlorite cement, Triassic, Central North Sea -- 5.4.3 Example 5: illite cement in aeolian sandstone, Rotliegend Group, Southern North Sea -- 5.4.4 Example 6: K-feldspar overgrowths -- 5.5 The Rb-Sr system -- 5.5.1 Principles -- 5.5.2 Analytical methods -- 5.5.3 Rb-Sr dating of clay minerals -- 5.5.4 Example 7: illite cement in aeolian sandstone, Rotliegend Group, Southern North Sea -- 5.5.5 Sr isotope stratigraphy -- 5.5.6 Example 8: dating Tertiary sediments, Vøring Plateau, offshore Norway -- 5.5.7 Tracing the origin of Sr in subsurface fluids -- 5.6 The Sm-Nd system -- 5.7 U-Th-Pb dating of carbonates -- Chapter 6: Porosity and Permeability Prediction -- 6.1 Introduction -- 6.2 Reservoir quality prediction in frontiers exploration: Flemish Pass Basin, offshore Newfoundland -- 6.2.1 Introduction -- 6.2.2 Geological background -- 6.2.3 Approach -- 6.2.4 Establishing a relationship between permeability and depth -- 6.2.5 Prediction of uncemented reservoir -- 6.2.6 Conclusions -- 6.3 Net to gross prediction: Norphlet Formation, Gulf of Mexico -- 6.3.1 Introduction -- 6.3.2 Geological background -- 6.3.3 Approach -- 6.3.4 Quantitative mineralogy: controls on reservoir quality -- 6.3.5 Conditions of mineral cement growth -- 6.3.6 Prediction of Tight Zone thickness -- 6.3.7 Conclusions -- 6.4 Influence of kaolinite on sandstone porosity: Brent Province, Northern North Sea -- 6.4.1 Introduction -- 6.4.2 Geological background -- 6.4.3 Approach -- 6.4.4 Petrography and isotopic composition of kaolinites -- 6.4.5 Conclusions -- 6.5 Appraisal from a discovery well: Magnus Field, Northern North Sea -- 6.5.1 Introduction -- 6.5.2 Geological background -- 6.5.3 Approach -- 6.5.4 Controls on porosity and relationship of cementation to oil filling -- 6.5.5 Conclusions.

6.6 History of fracturing in a Chalk reservoir: Machar Field, Central North Sea -- 6.6.1 Introduction -- 6.6.2 Geological background -- 6.6.3 Approach -- 6.6.4 Geochemistry of fracture fills I - fluid inclusions -- 6.6.5 Geochemistry of fracture fills II - stable and radiogenic isotopes -- 6.6.6 Conclusions -- 6.7 Controls on permeability and the origin of high-permeability streaks: Forties Field, Central North Sea -- 6.7.1 Introduction -- 6.7.2 Geological background -- 6.7.3 Approach -- 6.7.4 Image analysis of Forties Formation sandstones -- 6.7.5 Conclusions -- Chapter 7: Fluid Migration -- 7.1 Introduction -- 7.2 History of petroleum migration from outcrop samples: Aquitaine Basin, France -- 7.2.1 Introduction -- 7.2.2 Geological background -- 7.2.3 Approach -- 7.2.4 Fluid inclusions: petrography, microthermometry and GCMS analysis -- 7.2.5 Conclusions -- 7.3 Prediction of the occurrence of diagenetic celestite cap rock: Central North Sea -- 7.3.1 Introduction and approach -- 7.3.2 Conditions and cause of celestite precipitation -- 7.3.3 Simulation of celestite precipitation -- 7.3.4 Conclusions -- 7.4: Regional mapping of migration pathways: Weald Basin, onshore UK -- 7.4.1 Introduction and approach -- 7.4.2 Geological background -- 7.4.3 Fluid inclusions in ferroan calcite cement -- 7.4.4 Conclusions -- 7.5 Filling history of a reservoir: Waalwijk, onshore Netherlands -- 7.5.1 Introduction -- 7.5.2 Geological background -- 7.5.3 Approach -- 7.5.4 Petrography, K-Ar illite ages and dolomite stable isotope ratios -- 7.5.5 Conclusions -- Chapter 8: Correlation -- 8.1 Introduction -- 8.2 Stratigraphic correlation -- 8.3 Lithological and reservoir property correlation -- 8.4 Stratigraphic correlation in exploration: Tertiary of offshore Norway -- 8.4.1 Introduction -- 8.4.2 Geological background -- 8.4.3 Approach -- 8.4.4 Strontium isotope ages.

8.4.5 Conclusions -- 8.5 Stratigraphic correlation in exploration: Plio-Pleistocene of the Gulf of Mexico -- 8.5.1 Introduction -- 8.5.2 Geological background -- 8.5.3 Approach -- 8.5.4 Oxygen isotope stratigraphy -- 8.5.5 Conclusions -- 8.6 Reservoir connectivity: Ekofisk Field, Cretaceous of offshore Norway -- 8.6.1 Introduction -- 8.6.2 Geological background -- 8.6.3 Approach -- 8.6.4 Isotopic analyses of chalk and residual salts -- 8.6.5 Conclusions -- 8.7 Reservoir correlation: Gullfaks Field, Triassic-Jurassic of offshore Norway -- 8.7.1 Introduction -- 8.7.2 Geological background -- 8.7.3 Approach -- 8.7.4 Sm-Nd isotopic correlation -- 8.7.5 Conclusions -- Chapter 9: Petroleum Recovery -- 9.1 Introduction -- 9.2 Secondary recovery -- 9.3 Enhanced oil recovery -- 9.4 Production of corrosive fluids -- 9.5 Secondary recovery: Forties Field, offshore UK -- 9.5.1 Introduction -- 9.5.2 Geological background -- 9.5.3 Approach -- 9.5.4 Chemical and isotopic analyses of produced fluids -- 9.5.5 Conclusions -- 9.6 Secondary recovery and gas souring: Wytch Farm Oilfield, Dorset, UK -- 9.6.1 Introduction -- 9.6.2 Geological background -- 9.6.3 Approach -- 9.6.4 Chemical and isotopic analyses of produced fluids -- 9.6.5 Conclusions -- 9.7 Enhanced oil recovery - steam injection: Cold Lake Area Oil Sands, Alberta, Canada -- 9.7.1 Introduction -- 9.7.2 Geological background -- 9.7.3 Approach -- 9.7.4 Petrographic and isotopic investigations of steam-induced reactions -- 9.7.5 Conclusions -- 9.8 Enhanced oil recovery - fireflooding: Lloydminster Area Oil Sands, Saskatchewan, Canada -- 9.8.1 Introduction -- 9.8.2 Geological background -- 9.8.3 Approach -- 9.8.4 Petrographic investigation of mineralogical changes -- 9.8.5 Conclusions -- References -- Index.
Abstract:
Petroleum is not as easy to find as it used to be. In order to locate and develop reserves efficiently, it's vital that geologists and geophysicists understand the geological processes that affect a reservoir rock and the oil that is trapped within it. This book is about how and to what extent, these processes may be understood. The theme of the book is the characterization of fluids in sedimentary basins, understanding their interaction with each other and with rocks, and the application of this information to finding, developing and producing oil and gas. The first part of the book describes the techniques, and the second part relates real-life case histories covering a wide range of applications. Petroleum geology, particularly exploration, involves making the best of incomplete results. It is essentially an optimistic exercise. This book will remove some of the guesswork. Brings together the most important geochemical methods in a single volume. Authored by two well-respected researchers in the oil industry. Real-life, international case histories.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: