
Systems Engineering Approach to Medical Automation.
Title:
Systems Engineering Approach to Medical Automation.
Author:
Felder, Robin.
ISBN:
9781596931657
Personal Author:
Physical Description:
1 online resource (315 pages)
Contents:
Systems Engineering Approach to Medical Automation -- Contents -- Preface -- Chapter 1: Introduction to Medical Automation -- 1.1 Introduction -- 1.2 The Need for Improved Process Management in Medicine -- 1.3 Knowledge Empowers Automation -- 1.4 Personalization of Medicine Enabled by Technology -- 1.5 Applications of Automation -- 1.5.1 Bar Coding, RFID, and Wireless Tracking -- 1.6 Summary and Conclusion -- References -- Chapter 2: Human Factors Issues with Automation -- 2.1 Human Factors -- 2.2 Human Factors in Healthcare -- 2.3 Automation -- 2.3.1 Advantages of Automation -- 2.3.2 Disadvantages of Automation -- 2.4 Creating More Effective Automation -- 2.5 Adaptive Automation -- 2.6 Conclusion -- References -- Selected Bibliography -- Chapter 3: Mathematical Modeling for Medical Automation -- 3.1 Introduction -- 3.1.1 Medical Automation -- 3.1.2 Modeling and Automation -- 3.2 Mathematical Modeling -- 3.2.1 Basic Approaches for Model Creation -- 3.2.2 Mathematical Modeling Techniques for Automation -- 3.3 Applications of Mathematical Modeling in Medical Automation -- 3.3.1 Modeling of Medical Robotics -- 3.3.2 Dynamics Modeling of Neutrophils Production from Stem Cells -- 3.3.3 Modeling of Biological Immune System -- 3.4 Discussion and Conclusion -- References -- Chapter 4: Contact Dynamic Simulation of Micro-/Nanoscale Manipulation for Medical Applications -- 4.1 Introduction -- 4.2 Modeling of Nanoscale System Dynamics -- 4.3 Modeling of Individual Forces -- 4.3.1 Van der Waals Force -- 4.3.2 Electrostatic Force -- 4.3.3 Contact Force -- 4.3.4 Sliding Friction Force -- 4.3.5 Rolling Friction Moment -- 4.4 Numerical Simulation -- 4.5 Simulation of the Manipulation of Stem Cell Inner Mass -- 4.6 Concluding Remarks -- References -- Chapter 5: Modeling and Mathematical Analysis of Swarms of Microscopic Robots for Medical Diagnostics.
5.1 Microscopic Robots -- 5.2 Evaluating Collective Robot Performance -- 5.3 Modeling Behavior of Microscopic Robots -- 5.3.1 Fluid Flow and Geometry -- 5.3.2 Chemical Sensing -- 5.4 Task Scenario -- 5.4.1 Example Task Environment -- 5.4.2 Diffusion of Robots and Chemicals -- 5.4.3 Control -- 5.4.4 Analysis of Behavior -- 5.4.5 Detection Performance -- 5.5 Discussion -- Acknowledgments -- References -- Chapter 6: Medical and Biometric Identification for Pattern Recognition and Data Fusion with Quantitative Measuring -- 6.1 Introduction -- 6.2 Overview of Practical Approaches -- 6.2.1 Principal Component Analysis -- 6.2.2 Nonlinear Component Analysis -- 6.2.3 Independent Component Analysis -- 6.2.4 2-D Discrete Wavelet Transform -- 6.2.5 Image Processing Background [1, 5] -- 6.2.6 Image Registration Models -- 6.2.7 Area-Based Intramodality Registration: Cross Correlation and FourierTransform [29-36] -- 6.2.8 Feature-Based Multimodality Registration [26-28] -- 6.2.9 Image Fusion -- 6.3 Practical Implementation of Medical and Biometric System Identification -- 6.3.1 Linear and Nonlinear Component Analysis Approach -- 6.3.2 Independent Component Analysis Approach -- 6.3.3 2-D Discrete Wavelet Transform Approach -- 6.3.4 Intramodality Area-Based Registration and Fusion -- 6.3.5 Multimodality Feature-Based Image Registration -- 6.3.6 Optimal Fusion Based on Common Pixel Count Maximization -- References -- Chapter 7: Lab-on-a-Chip Automation of Laboratory Diagnostics: Lipoprotein Subclass Separation Automation -- 7.1 Introduction -- 7.2 Lipoprotein Subclass Assay -- 7.2.1 Classifications and Functions of Serum Lipoproteins -- 7.2.2 Cardiovascular Diseases Diagnosis -- 7.2.3 Current Technologies of Lipoprotein Subclass Assay -- 7.3 Lab-on-a-Chip Bio-Analyzer for HDL and LDL Subclass Separation -- 7.4 Automated Lipoprotein Subclass Separation.
7.4.1 Robotic Liquid Handling for Sample Preparation -- 7.4.2 Software Automation -- 7.5 Experimental Results -- 7.5.1 Lab-on-a-Chip Assay of HDL Subclasses -- 7.5.2 Quantification of Total HDL Concentration -- 7.6 Discussion and Conclusion -- References -- Chapter 8: Clinical Laboratory Automation -- 8.1 Definition of Laboratory Automation -- 8.2 History of Clinical Laboratory Automation -- 8.2.1 Specimen Labeling -- 8.3 Definitions -- 8.3.1 Workstation -- 8.3.3 Total Laboratory Automation -- 8.3.2 Workcells -- 8.4 Pediatric Samples -- 8.5 Process Control -- 8.6 Automated Clinical Laboratory Efficiency and Quality Programs -- 8.7 Automated Centrifugation -- 8.8 Automated Decapping and Recapping -- 8.9 Automated Storage and Retrieval -- 8.10 Automated Aliquotting -- 8.11 Mobile Robotics -- 8.12 Point-of-Care Automation -- 8.13 System Integration -- 8.14 Summary and Conclusion -- References -- Chapter 9: Pharmacy Automation Technologies -- 9.1 Background -- 9.2 Technology and Automation: Hospitals -- 9.3 Effect of Automation on Efficiency in Hospitals -- 9.4 Effect of Automation on Medication Errors in Hospitals -- 9.5 Medication Administration Errors in Hospitals -- 9.6 Technology and Automation: Community Pharmacy -- 9.7 Effect of Automation on Dispensing Errors: Community Pharmacy -- 9.8 Examples of Problems with Automation That Can Affect Medication Safety -- 9.9 Conclusion -- References -- Chapter 10: Automation Technologies in the Operating Room -- 10.1 Introduction -- 10.2 Prosthetic Hip Surgery -- 10.3 AESOP -- 10.4 HERMES OR Control Center -- 10.5 Zeus -- 10.6 da Vinci -- 10.7 RP-7 -- 10.8 The Future -- References -- Chapter 11: Health Care Supply Chain Automation -- 11.1 Introduction -- 11.2 Rationale for Healthcare Supply Chain Automation -- 11.3 History of Supply Chain Automation Technologies in Health Care.
11.4 Supply Chain Automation Implementation -- 11.5 Future Possibilities -- References -- Chapter 12: Process Management Using Information Systems: Principles and Systems -- 12.1 Introduction -- 12.2 Process Management and Control: Definitions -- 12.2.1 Process and Business Process -- 12.2.2 Process Management -- 12.2.3 Workflow, Workflow Management, and Workflow ManagementSystem -- 12.2.4 Resources -- 12.3 System Architecture -- 12.4 Scheduling Workflow in Real Time -- 12.4.1 Introduction -- 12.4.2 Scheduling -- 12.5 Usable Software Languages -- 12.5.1 Platforms -- 12.5.2 Databases -- 12.5.3 Audit Trails -- Selected Bibliography -- Chapter 13: Telehealth and Telemedicine Technologies: Overview, Benefits, and Implications -- 13.1 Introduction -- 13.2 Status of and Implications for Rural Healthcare in America -- 13.3 Implications for Urban Healthcare -- 13.4 Correctional Populations -- 13.5 Serving the Elderly -- 13.6 Challenges to Telehealth: Reimbursement -- 13.7 Home Telehealth -- 13.8 Requirements for Telehealth Technologies -- 13.8.1 Acceptance and Usability of Advanced Technologies -- 13.8.2 Standardization and Interoperability -- 13.8.3 Backend IT Systems (EMR, EHR, PHR) -- 13.9 Conclusion -- References -- Chapter 14: Automated In-Home Patient Monitoring: Geriatric Care Application -- 14.1 Introduction -- 14.2 Model for Care Enabled by Ambient Intelligence -- 14.3 Requirements for Success -- 14.4 Example Passive Monitoring Systems -- 14.4.1 Activity Monitoring System -- 14.4.2 Passive In-Bed Vital Signs Monitor -- 14.4.3 Passive Floor Vibration-Based Fall Detector and Gait Monitor -- 14.4.5 Instrumented Walker for the Passive Monitoring of Gait and Balance -- 14.4.6 Summary of Field Pilot Results -- 14.5 Related Work -- 14.6 Conclusion -- References -- Chapter 15: Connected Medicine -- 15.1 Introduction -- 15.2 Applications.
15.2.1 Expert Knowledge: Web Sites -- 15.2.2 Self-Help -- 15.2.3 SMS -- 15.2.4 Measuring Device Linked by PHA to Expert Systems -- 15.2.5 Medical Data on a SIM Card -- 15.2.6 Exercise and Rehabilitation -- 15.2.7 Links to Nutrition Information Expert Knowledge Systems -- 15.2.8 Epilepsy Alert -- 15.2.9 Body-Worn Sensors -- References -- Chapter 16: Information Technology Networks, Data Management, and Electronic Medical Records -- 16.1 Introduction -- 16.2 IT Networks for Medical Information Management -- 16.2.1 Online Medical Records Systems -- 16.2.2 Health IT Networks for the Private Practice -- 16.2.3 Picture Archiving Communications Systems -- 16.2.4 Assessing the Implementation Success and Maturity of Health IT Networks -- 16.2.5 Network Architectures -- 16.2.6 Bandwidth Requirements -- 16.2.7 Protocols -- 16.2.8 Security Considerations -- 16.2.9 Network Management -- 16.2.10 Storage Management -- 16.3 Data Management -- 16.3.1 Introduction -- 16.3.2 Architecture for Data Management -- 16.3.3 The Master Patient Index -- 16.3.4 Data Management Functions -- 16.3.5 Design Considerations -- 16.4 Electronic Medical Records -- 16.4.1 Introduction -- 16.4.2 Interoperability -- 16.4.3 Medical Terminology -- 16.4.4 Classification Systems -- 16.4.5 Health Level 7 (HL7) Standards for EMR/EHR -- 16.4.6 Longitudinal EHR -- 16.4.7 Web Services Standards -- 16.4.8 EMR/EHR Privacy and Security -- 16.4.9 The Personal Health Record -- 16.5 The Nationwide Health Information Network in the United States -- 16.5.1 Advantages of the NHIN -- 16.5.2 Implementing the NHIN: Implications for Healthcare IT -- References -- About the Editors -- List of Contributors -- Index.
Abstract:
The book offers you a solid understanding of medical automation principles and the latest applications in the field. You discover how computers and devices can be used to schedule personnel and services, and help maintain a just-in-time, lean, and more affordable medical services. You learn how to automate your pharmacy and laboratory services for maximum profit and minimum turnaround time. Moreover, this forward-looking book helps you determine how nanotechnology is evolving to solve difficult medical challenges.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View