Cover image for FDTD Modeling of Metamaterials : Theory and Applications.
FDTD Modeling of Metamaterials : Theory and Applications.
Title:
FDTD Modeling of Metamaterials : Theory and Applications.
Author:
Hao, Yang.
ISBN:
9781596931619
Personal Author:
Physical Description:
1 online resource (395 pages)
Contents:
FDTD Modeling of Metamaterials: Theory and Applications -- Contents -- Preface -- Acknowledgments -- Chapter 1: Introduction -- 1.1 What Are Electromagnetic Metamaterials? -- 1.2 A Historical Overview of Electromagntic Metamaterials -- 1.2.1 Artificial Dielectrics -- 1.2.2 Artificial Magnetic Materials -- 1.2.3 Bianisotropic Composites -- 1.2.4 Double-Negative and Indefinite Media -- 1.2.5 Photonic and Electromagnetic Crystals -- 1.3 Numerical Modeling of Electromagnetic Metamaterials -- 1.4 Layout of the Book -- References -- Chapter 2: Fundamentals and Applications of Electromagnetic Bandgap Structures -- 2.1 Introduction -- 2.2 Bloch's Theorem and the Dispersion Diagram -- 2.2.1 Translational Symmetry -- 2.2.2 Bloch's Theorem and Periodic Boundary Condition (PBC) -- 2.2.3 Brillouin Zone -- 2.2.4 Dispersion Diagram and EBG -- 2.3 An Overview of Numerical Methods for Modeling EBG Structures -- 2.3.1 The Generalized Rayleigh's Identity Method and the Korringa-Kohn-Rostoker (KKR) Method -- 2.3.2 Plane-Wave Expansion Method -- 2.3.3 The Transfer-Matrix Method -- 2.3.4 The Finite-Difference Time-Domain (FDTD) Method -- 2.4 An Overview of EBG Applications -- 2.4.1 In-Phase Reflection -- 2.4.2 Suppression of Surface Waves -- 2.4.3 EBGs Operating in Defect Modes -- 2.4.4 Subwavelength Imaging from the Passband of the EBGs -- 2.5 Summary -- References -- Chapter 3: A Brief Introduction to the FDTD Method for Modeling Metamaterials -- 3.1 Introduction -- 3.2 Formulations of the Yee's FDTD Algorithm -- 3.2.1 Maxwell's Equations -- 3.2.2 Yee's Orthogonal Mesh -- 3.2.3 Time Domain Discretization: The Leapfrog Scheme and the CourantStability Condition (CFL Condition) -- 3.3 Other Spatial Domain Discretization Schemes -- 3.3.1 Subgridding Mesh -- 3.3.2 Nonorthogonal Mesh -- 3.3.3 Hybrid FDTD Meshes -- 3.4 Boundary Conditions.

3.4.1 Mur's Absorbing Boundary Conditions (ABCs) -- 3.4.2 Perfect Matched Layers (PMLs) -- 3.4.3 Periodic Boundary Condition (PBC) -- 3.5 Bandgap Calculation -- 3.5.1 Source Excitation -- 3.5.2 Dispersion Diagram Calculation -- 3.5.3 Transmission and Reflection Coefficient Calculation -- 3.6 Summary -- References -- Chapter 4: FDTD Modeling of EBGs and Their Applications -- 4.1 Introduction -- 4.2 FDTD Modeling of Infinite Electromagnetic Bandgap Structures -- 4.2.1 Physical Model of EBG Structures -- 4.2.2 Mesh Generation and Simulation Parameters in FDTD Modeling -- 4.2.3 Simulation Results of Infinite EBGs Using the Conformal and Yee's FDTD -- 4.3 Conformal FDTD Modeling of (Semi-)Finite EBG Structures -- 4.3.1 FDTD Model and Simulation Results -- 4.4 Design and Modeling of Millimeter-Wave EBG Antennas -- 4.4.1 Introduction -- 4.4.2 Design and Modeling of Woodpile EBG -- 4.4.3 A Millimeter-Wave EBG Antenna Based on a Woodpile Structure -- 4.4.4 Experimental Results -- 4.5 Conclusions -- References -- Chapter 5: Left-Handed Metamaterials (LHMs)and Their Applications -- 5.1 Introduction -- 5.2 Effective Medium Theory and Left-Handed Metamaterials -- 5.2.1 A Composite Medium of Metallic Wires and Split Ring Resonators -- 5.2.2 Isotropic Three-Dimensional Left-Handed Metamaterials -- 5.2.3 Left-Handed Metamaterials Using Simple Short Wire Pairs -- 5.3 Applications of Left-Handed Metamaterials -- 5.3.1 Imaging by a Perfect LHM Lens -- 5.3.2 Transmission Line Structures of Left-Handed Metamaterials -- 5.3.3 Directive Electromagnetic Scattering by an Infinite Conducting CylinderCoated with LHMs -- 5.3.4 Negative Index Materials (NIM) for Selective Angular Separation ofMicrowave by Polarization -- References -- Chapter 6: Numerical Modeling of Left-Handed Material (LHM) Using a Dispersive FDTD Method -- 6.1 Introduction.

6.2 The Effective Medium of Left-Handed Materials (LHMs) -- 6.3 Modeling of Left-Handed Metamaterials Using a Dispersive FDTD Method -- 6.3.1 Two-Dimensional Dispersive FDTD with Auxiliary Differential Equations(ADEs) -- 6.3.2 Phase Compensation Through Layered LHM Structures -- 6.3.3 Conjugate Dielectric and Metamaterial Slab as Radomes -- 6.3.4 Numerical Results -- 6.4 Conclusions -- References -- Chapter 7: FDTD Modeling and Figure-of-Merit(FOM) Analysis of Practical Metamaterials -- 7.1 Introduction -- 7.2 EM Response of the Infinite, Doubly Periodic DNG Slab with Plane Wave Illumination -- 7.2.1 Model Description of the Array Comprising of Split-Ring Resonators and Wires -- 7.2.2 Scattering Parameters Measurements Obtained from the PBC/FDTD Code -- 7.2.3 Phase Data Inside the DNG Slab -- 7.3 Retrieval of Effective Material Constitutive Parameters Using the Inversion Approach -- 7.3.1 Review of the Inversion Approach -- 7.3.2 Retrieval of the Effective Material Parameters from the Numerical S-Parameters Obtained from FDTD Simulations of Metamaterials -- 7.3.3 Summary of the Difficulties Encountered Using the Inversion Approachfor Effective Medium Characterization -- 7.4 EM Response of a Finite Artificial-DNG Slab with Localized Beam Illumination -- 7.4.1 Slab with Localized Beam Illumination -- 7.4.2 FDTD Model -- 7.4.3 Total Transmission and Reflection Power UnderGaussian Beam Illumination -- 7.4.4 EM Response of the Artificial-DNG Slab at Normal Incidence with Ey Polarization -- 7.4.5 EM Response of the Artificial-DNG Slab at Oblique TMz IncidenceComing from (q = 150◦, f = 90◦) with Hx Polarization -- 7.4.6 EM Response of the Artificial-DNG Slab at Oblique TEz Incidence Comingfromq = 150◦, f = 0◦ with Ey Polarization -- 7.4.7 EM Response of a Finite Artificial-DNG Slab Excited by Small Dipole -- 7.5 Figure-of-Merit (FOM) Analysis.

7.5.1 Loss and Bandwidth of Metamaterials with Different Electrical Sizes and Particle Densities -- 7.5.2 Figure-of-Merit Analysis by Numerical Experiments -- 7.6 Conclusions -- References -- Chapter 8: Accurate FDTD Modeling of a Perfect Lens -- 8.1 Introduction -- 8.2 Dispersive FDTD Modeling of LHMs with Spatial Averaging at the Boundaries -- 8.2.1 The (E, D, H, B) Scheme -- 8.2.2 The (E, J, H, M) Scheme -- 8.2.3 The Spatial Averaging Methods -- 8.3 Numerical Implementation -- 8.4 Effects of Material Parameters on the Accuracy of Numerical Simulation -- 8.5 Effects of Switching Time -- 8.6 Effects of Transverse Dimensions on Image Quality -- 8.7 Modeling of Subwavelength Imaging -- 8.8 Conclusions -- References -- Chapter 9: Spatially Dispersive FDTD Modelingof Wire Medium -- 9.1 Introduction -- 9.2 Spatial Dispersion in the Wire Medium -- 9.3 Spatially Dispersive FDTD Formulations -- 9.4 Stability and Numerical Dispersion Analysis -- 9.5 Perfectly Matched Layer for Wire Medium Slabs -- 9.6 Numerical Thickness of Wire Medium Slabs -- 9.7 Two-Dimensional FDTD Simulations -- 9.8 Three-Dimensional FDTD Simulations -- 9.9 Experimental Verifications -- 9.10 Internal Imaging by Wire Medium Slabs -- 9.11 Conclusions -- References -- Chapter 10: FDTD Modeling of Metamaterialsfor Optics -- 10.1 Introduction -- 10.2 Dispersive FDTD Modeling of Silver-Dielectric Layered Structuresfor Subwavelength Imaging -- 10.2.1 Introduction -- 10.2.2 FDTD Modeling of the Silver-Dielectric Layered Structure -- 10.2.3 Numerical Results and Discussions -- 10.3 A Metamaterial Scanning Near-Field Optical Microscope -- 10.3.1 Introduction -- 10.3.2 Theory -- 10.3.3 Simulation -- 10.4 FDTD Study of Guided Modes in Nanoplasmonic Waveguides -- 10.4.1 Conformal Dispersive FDTD Method Using Effective Permittivities (EPs) -- 10.5 FDTD Calculation of Dispersion Diagrams.

10.5.1 Wave Propagation in Plasmonic Waveguides Formed by Finite Numberof Elements -- 10.6 FDTD Modeling of Electromagnetic Cloaking Structures -- 10.6.1 Dispersive FDTD Modeling of the Cloaking Structure -- 10.6.2 Numerical Results and Discussion -- References -- Chapter 11: Overviews and Final Remarks -- 11.1 Introduction -- 11.2 Overview of Advantages and Disadvantages of the FDTDMethod in Modeling Metamaterials -- 11.3 Overview of Metamaterial Applications and Final Remarks -- 11.3.1 Small Antennas Enclosed by an ENG Shell -- 11.3.2 Focusing and Superlensing Effects -- 11.3.3 Performance Enhancement of Planar Antennas -- 11.3.4 Electromagnetic Cloaks -- References -- List of Abbreviations -- About the Authors -- Index.
Abstract:
This first-of-its-kind book brings you up to speed on breakthrough finite-difference time-domain techniques for modeling metamaterial characteristics and behaviors in electromagnetic systems. You get in-depth coverage of state-of-the-art FDTD modeling techniques and applications for electromagnetic bandgap (EBG) structures, left-handed metamaterials (LHMs), wire medium, metamaterials for optics, and other practical metamaterials.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: