
Analytical and Computational Methods in Electromagnetics.
Title:
Analytical and Computational Methods in Electromagnetics.
Author:
Garg, Ramesh.
ISBN:
9781596933866
Personal Author:
Physical Description:
1 online resource (550 pages)
Contents:
Analytical and Computational Methods in Electromagnetics -- Contents -- Preface -- CHAPTER 1: Basic Principles of Electromagnetic Theory -- 1.1 Maxwell's Equations -- 1.2 Constitutive Relations -- 1.3 Electrical Properties of the Medium -- 1.4 Interface and Boundary Conditions -- 1.5 Skin Depth -- 1.6 Poynting Vector and Power Flow -- 1.7 Image Currents and Equivalence Principle -- 1.8 Reciprocity Theorem -- 1.9 Differential Equations in Electromagnetics -- 1.10 Electric and Magnetic Vector Potentials -- 1.11 Wave Types and Solutions -- 1.12 Phase Velocity, Dispersion, and Group Velocity -- 1.13 Characteristics of Transmission Lines -- 1.14 Charge and Current Singularities -- 1.15 Classification of Methods of Analysis -- 1.16 Mathematical Framework in Electromagnetics -- 1.17 Overview of Analytical and Computational Methods -- 1.18 Summary -- References -- CHAPTER 2: Analytical Methods and Orthogonal Functions -- 2.1 Introduction -- 2.2 Method of Separation of Variables -- 2.3 Orthogonality Condition -- 2.4 Sturm-Liouville Differential Equation -- 2.4.1 Orthogonality of Eigenfunctions -- 2.4.2 Boundary Conditions for Orthogonal Functions -- 2.4.3 Examples of Sturm-Liouville Type of Differential Equations -- 2.5 Eigenfunction Expansion Method -- 2.6 Vector Space/Function Space -- 2.6.1 Operators -- 2.6.2 Matrix Representation of Operators -- 2.6.3 Generic Solution of Sturm-Liouville Type Differential Equations -- 2.7 Delta-Function and Source Representations -- 2.8 Summary -- References -- Problems -- CHAPTER 3: Green's Function -- 3.1 Introduction -- 3.2 Direct Construction Approach for Green's Function -- 3.2.1 Green's Function for the Sturm-Liouville Differential Equation -- 3.2.2 Green's Function for a Loaded Transmission Line -- 3.3 Eigenfunction Expansion of Green's Function -- 3.4 Green's Function in Two Dimensions.
3.4.1 Double Series Expansion Method -- 3.4.2 Single Series Expansion Method -- 3.4.3 Green's Function in Spectral Domain -- 3.5 Green's Function for Probe Excitation of TE-Modes in Rectangular Waveguide -- 3.6 Green's Function for Unbounded Region -- 3.7 Summary -- References -- Problems -- CHAPTER 4: Contour Integration and Conformal Mapping -- 4.1 Introduction -- 4.1.1 Analytic Function -- 4.1.2 Analytic Continuation -- 4.2 Calculus of Residues -- 4.2.1 Poles and Branch-Point Singularities -- 4.2.2 Cauchy Integral Theorem -- 4.2.3 Residue Theorem -- 4.3 Evaluation of Definite Improper Integrals -- 4.3.1 Improper Integral Along the Real Axis -- 4.3.2 Fourier Transform Improper Integrals -- 4.3.3 Some Other Methods Useful for Solving Improper Integrals -- 4.4 Conformal Mapping of Complex Functions -- 4.4.1 Mapping -- 4.4.2 Properties of Conformal Mapping -- 4.4.3 Applications of Conformal Mapping -- 4.5 Schwarz-Christoffel Transformation -- 4.5.1 Elliptic Sine Function -- 4.5.2 Application to Coplanar Strips -- 4.6 Quasi-Static Analysis of Planar Transmission Lines -- 4.6.1 Strip Line -- 4.6.2 Microstrip Line with a Cover Shield -- 4.7 Some Useful Mappings for Planar Transmission Lines -- 4.7.1 Transformation of Finite Dielectric Thickness to Infinite Thickness -- 4.7.2 Transformations for Finite Width Lateral Ground Planes and FiniteDielectric Thickness -- 4.7.3 Transformation from Asymmetric to Symmetric Metallization -- 4.8 Summary -- References -- Problems -- CHAPTER 5: Fourier Transform Method -- 5.1 Introduction -- 5.2 Reduction of PDE to Ordinary Differential Equation/Algebraic Equation Using Fourier Transform -- 5.3 Solution of Differential Equations with Unbounded Regions -- 5.3.1 Free-Space Green's Function in One Dimension -- 5.3.2 Fourier Sine Transform and Half-Space Green's Function.
5.3.3 Free-Space Green's Function in Two Dimensions -- 5.3.4 Electric Line Source Above a Perfectly Conducting Ground Plane -- 5.3.5 Free-Space Green's Function in Three Dimensions -- 5.4 Radiation from Two-Dimensional Apertures -- 5.5 Stationary Phase Method -- 5.5.1 Radiation Pattern -- 5.5.2 Asymptotic Value of Bessel Functions -- 5.6 Green's Function for the Quasi-Static Analysis of Microstrip Line -- 5.7 Summary -- References -- Appendix 5A: Evaluation of the Integral in (5.120) -- Problems -- CHAPTER 6: Introduction to Computational Methods -- 6.1 Elements of Computational Methods -- 6.2 Basis Functions -- 6.2.1 Subdomain Basis Functions -- 6.2.2 Entire Domain Basis Functions -- 6.3 Convergence and Discretization Error -- 6.3.1 Convergence Test -- 6.3.2 Order of Convergence -- 6.3.3 Disctretization Error and Extrapolation -- 6.3.4 Discretization of Operators -- 6.3.5 Discretization Error in FDM, FDTD, and FEM -- 6.3.6 Vector and Matrix Norms -- 6.4 Stability of Numerical Solutions -- 6.4.1 Stability of FDTD Solution -- 6.4.2 Stability of Matrix Solution -- 6.5 Accuracy of Numerical Solutions -- 6.5.1 Modeling Errors -- 6.5.2 Truncation Error -- 6.5.3 Round-Off Error -- 6.5.4 Validation -- 6.6 Spurious Solutions -- 6.7 Formulations for the Computational Methods -- 6.8 Summary -- References -- Problems -- CHAPTER 7: Method of Finite Differences -- 7.1 Finite Difference Approximations -- 7.1.1 Difference Form of the First Derivative -- 7.1.2 Difference Form of the Second Derivative -- 7.1.3 Difference Form of Laplace and Poisson Equations -- 7.2 Treatment of Interface and Boundary Conditions -- 7.2.1 Nodes on the Interface -- 7.2.2 Dielectric Inhomogeneity in One Quadrant About a Node -- 7.2.3 Neumann Boundary Condition and the Nodes on the Edge -- 7.2.4 Node at a Corner -- 7.2.5 Node at an Edge with Dielectric Inhomogeneity About the Node.
7.2.6 Treatment of Curved Boundaries -- 7.2.7 Finite Difference Analysis of an Inhomogeneously Filled Parallel PlateCapacitor -- 7.3 Finite Difference Analysis of Guiding Structures -- 7.3.1 Analysis of Enclosed Microstrip Line -- 7.3.2 Analysis of Geometries with Open Boundaries -- 7.3.3 Wave Propagation and Numerical Dispersion -- 7.3.4 Analysis of Ridge Waveguide -- 7.4 Summary -- References -- Problems -- CHAPTER 8: Finite-Difference Time-Domain Analysis -- 8.1 Pulse Propagation in a Transmission Line -- 8.2 FDTD Analysis in One Dimension -- 8.2.1 Spatial Step Dx and Numerical Dispersion -- 8.2.2 Time Step Dt and Stability of the Solution -- 8.2.3 Source or Excitation of the Grid -- 8.2.4 Absorbing Boundary Conditions for One-Dimensional Propagation -- 8.3 Applications of One-Dimensional FDTD Analysis -- 8.3.1 Reflection at an Interface -- 8.3.2 Determination of Propagation Constant -- 8.3.3 Design of Material Absorber -- 8.3.4 Exponential Time-Stepping Algorithm in the Lossy Region -- 8.3.5 Extraction of Frequency Domain Information from the Time Domain Data -- 8.3.6 Simulation of Lossy, Dispersive Materials -- 8.4 FDTD Analysis in Two Dimensions -- 8.4.1 Unit Cell in Two Dimensions -- 8.4.2 Numerical Dispersion in Two Dimensions -- 8.4.3 Time Step Dt for Two-Dimensional Propagation -- 8.4.4 Absorbing Boundary Conditions for Propagation in Two Dimensions -- 8.4.5 Perfectly Matched Layer ABC -- 8.5 FDTD Analysis in Three Dimensions -- 8.5.1 Yee Cell -- 8.5.2 Numerical Dispersion in Three Dimensions -- 8.5.3 Time Step Dt for Three-Dimensional Propagation -- 8.5.4 Absorbing Boundary Conditions and PML for Three Dimensions -- 8.6 Implementation of Boundary Conditions in FDTD -- 8.6.1 Perfect Electric and Magnetic Wall Boundary Conditions -- 8.6.2 Interface Conditions -- 8.7 Advances in FDTD -- 8.8 Summary -- References -- Problems.
CHAPTER 9: Variational Methods -- 9.1 Calculus of Variations -- 9.1.1 Stationarity -- 9.1.2 Extremum -- 9.1.3 Functional -- 9.1.4 Variation or Increment of a Function -- 9.1.5 Variation and Stationarity of Functionals -- 9.2 Stationary Functionals and Euler Equations -- 9.3 The Ritz Variational Method -- 9.4 Applications of Ritz Approach -- 9.4.1 Variational Solution of Laplace Equation -- 9.4.2 Cutoff Frequency for Waveguide Modes -- 9.4.3 Resonant Frequency for Cavity Modes -- 9.4.4 Variational Formulation in Spectral Domain for the Microstrip Line -- 9.5 Construction of Functionals from the PDEs -- 9.6 Method of Weighted Residuals -- 9.6.1 Galerkin's Method -- 9.6.2 Point Matching Method -- 9.7 Summary -- References -- Problems -- CHAPTER 10: Finite Element Method -- 10.1 Basic Steps in Finite Element Analysis -- 10.1.1 Segmentation or Meshing of the Geometry -- 10.1.2 Derivation of the Element Matrix -- 10.1.3 Assembly of Element Matrices -- 10.1.4 Solution of System Matrix -- 10.1.5 Postprocessing -- 10.2 FEM Analysis in One Dimension -- 10.2.1 Treatment of Boundary and Interface Conditions -- 10.2.2 Accuracy and Numerical Dispersion -- 10.3 FEM Analysis in Two Dimensions -- 10.3.1 Solution of Two-Dimensional Wave Equation -- 10.3.2 Element Matrix for Rectangular Elements -- 10.3.3 Element Matrix for Triangular Elements -- 10.3.4 Assembly of Elements and System Equations -- 10.3.5 Capacitance of a Parallel Plate Capacitor -- 10.3.6 Cutoff Frequency of Waveguide Modes -- 10.3.7 FEM Analysis of Open Boundary Problems -- 10.4 Mesh Generation and Node Location Table -- 10.5 Weighted Residual Formulation for FEM -- 10.6 Summary -- References -- Problems -- CHAPTER 11: Method of Moments -- 11.1 Introduction -- 11.1.1 MoM Procedure -- 11.1.2 Point Matching and Galerkin's Methods -- 11.1.3 Eigenvalue Analysis Using MoM.
11.2 Solution of Integral Equations Using MoM.
Abstract:
This authoritative resource offers you clear and complete explanation of this essential electromagnetics knowledge, providing you with the analytical background you need to understand such key approaches as MoM (method of moments), FDTD (Finite Difference Time Domain) and FEM (Finite Element Method), and Green's functions. This comprehensive book includes all math necessary to master the material.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View