Cover image for Bioanalytical Chemistry.
Bioanalytical Chemistry.
Title:
Bioanalytical Chemistry.
Author:
Mikkelsen, Susan R.
ISBN:
9780471623861
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (381 pages)
Contents:
BIOANALYTICAL CHEMISTRY -- CONTENTS -- Preface -- Acknowledgments -- 1. Spectroscopic Methods for Matrix Characterization -- 1.1 Introduction -- 1.2 Total Protein -- 1.2.1 Lowry Method -- 1.2.2 Smith (BCA) Method -- 1.2.3 Bradford Method -- 1.2.4 Ninhydrin-Based Assay -- 1.2.5 Other Protein Quantitation Methods -- 1.3 Total DNA -- 1.3.1 Diaminobenzoic Acid Method -- 1.3.2 Diphenylamine Method -- 1.3.3 Other Fluorometric Methods -- 1.4 Total RNA -- 1.5 Total Carbohydrate -- 1.5.1 Ferricyanide Method -- 1.5.2 Phenol-Sulfuric Acid Method -- 1.5.3 2-Aminothiophenol Method -- 1.5.4 Purpald Assay for Bacterial Polysaccharides -- 1.6 Free Fatty Acids -- References -- Problems -- 2. Enzymes -- 2.1 Introduction -- 2.2 Enzyme Nomenclature -- 2.3 Enzyme Commission Numbers -- 2.4 Enzymes in Bioanalytical Chemistry -- 2.5 Enzyme Kinetics -- 2.5.1 Simple One-Substrate Enzyme Kinetics -- 2.5.2 Experimental Determination of Michaelis-Menten Parameters -- 2.5.2.1 Eadie-Hofstee Method -- 2.5.2.2 Hanes Method -- 2.5.2.3 Lineweaver-Burk Method -- 2.5.2.4 Cornish-Bowden-Eisenthal Method -- 2.5.3 Comparison of Methods for the Determination of K(m) Values -- 2.5.4 One-Substrate, Two-Product Enzyme Kinetics -- 2.5.5 Two-Substrate Enzyme Kinetics -- 2.5.6 Examples of Enzyme-Catalyzed Reactions and Their Treatment -- 2.6 Enzyme Activators -- 2.7 Enzyme Inhibitors -- 2.7.1 Competitive Inhibition -- 2.7.2 Noncompetitive Inhibition -- 2.7.3 Uncompetitive Inhibition -- 2.8 Enzyme Units and Concentrations -- Suggested References -- References -- Problems -- 3. Quantitation of Enzymes and Their Substrates -- 3.1 Introduction -- 3.2 Substrate Depletion or Product Accumulation -- 3.3 Direct and Coupled Measurements -- 3.4 Classification of Methods -- 3.5 Instrumental Methods -- 3.5.1 Optical Detection -- 3.5.1.1 Absorbance -- 3.5.1.2 Fluorescence -- 3.5.1.3 Luminescence.

3.5.1.4 Nephelometry -- 3.5.2 Electrochemical Detection -- 3.5.2.1 Amperometry -- 3.5.2.2 Potentiometry -- 3.5.2.3 Conductimetry -- 3.5.3 Other Detection Methods -- 3.5.3.1 Radiochemical -- 3.5.3.2 Manometry -- 3.5.3.3 Calorimetry -- 3.6 Ultra-High-Throughput Assays (HTA) -- 3.7 Practical Considerations for Enzymatic Assays -- Suggested References -- References -- Problems -- 4. Immobilized Enzymes -- 4.1 Introduction -- 4.2 Immobilization Methods -- 4.2.1 Nonpolymerizing Covalent Immobilization -- 4.2.1.1 Controlled-Pore Glass -- 4.2.1.2 Polysaccharides -- 4.2.1.3 Polyacrylamide -- 4.2.1.4 Acidic Supports -- 4.2.1.5 Anhydride Groups -- 4.2.1.6 Thiol Groups -- 4.2.2 Cross-Linking with Bifunctional Reagents -- 4.2.3 Adsorption -- 4.2.4 Entrapment -- 4.2.5 Microencapsulation -- 4.3 Properties of Immobilized Enzymes -- 4.4 Immobilized Enzyme Reactors -- 4.5 Theoretical Treatment of Packed-Bed Enzyme Reactors -- Suggested References -- References -- Problems -- 5. Antibodies -- 5.1 Introduction -- 5.2 Structural and Functional Properties of Antibodies -- 5.3 Polyclonal and Monoclonal Antibodies -- 5.4 Antibody-Antigen Interactions -- 5.5 Analytical Applications of Secondary Antibody-Antigen Interactions -- 5.5.1 Agglutination Reactions -- 5.5.2 Precipitation Reactions -- Suggested References -- References -- Problems -- 6. Quantitative Immunoassays with Labels -- 6.1 Introduction -- 6.2 Labeling Reactions -- 6.3 Heterogeneous Immunoassays -- 6.3.1 Labeled-Antibody Methods -- 6.3.2 Labeled-Ligand Assays -- 6.3.3 Radioisotopes -- 6.3.4 Fluorophores -- 6.3.4.1 Indirect Fluorescence -- 6.3.4.2 Competitive Fluorescence -- 6.3.4.3 Sandwich Fluorescence -- 6.3.4.4 Fluorescence Excitation Transfer -- 6.3.4.5 Time-Resolved Fluorescence -- 6.3.5 Chemiluminescent Labels -- 6.3.6 Enzyme Labels -- 6.4 Homogeneous Immunoassays -- 6.4.1 Fluorescent Labels.

6.4.1.1 Enhancement Fluorescence -- 6.4.1.2 Direct Quenching Fluorescence -- 6.4.1.3 Indirect Quenching Fluorescence -- 6.4.1.4 Fluorescence Polarization Immunoassay -- 6.4.1.5 Fluorescence Excitation Transfer -- 6.4.2 Enzyme Labels -- 6.4.2.1 Enzyme-Multiplied Immunoassay Technique -- 6.4.2.2 Substrate-Labeled Fluorescein Immunoassay -- 6.4.2.3 Apoenzyme Reactivation Immunoassay (ARIS) -- 6.4.2.4 Cloned Enzyme Donor Immunoassay -- 6.4.2.5 Enzyme Inhibitory Homogeneous Immunoassay -- 6.5 Evaluation of New Immunoassay Methods -- Suggested References -- References -- Problems -- 7. Biosensors -- 7.1 Introduction -- 7.2 Response of Enzyme-Based Biosensors -- 7.3 Examples of Biosensor Configurations -- 7.3.1 Ferrocene-Mediated Amperometric Glucose Sensor -- 7.3.2 Potentiometric Biosensor for Phenyl Acetate -- 7.3.3 Potentiometric Immunosensor for Digoxin -- 7.3.4 Evanescent-Wave Fluorescence Biosensor for Bungarotoxin -- 7.3.5 Optical Biosensor for Glucose Based on Fluorescence Energy Transfer -- 7.3.6 Piezoelectric Sensor for Nucleic Acid Detection -- 7.3.7 Enzyme Thermistors -- 7.4 Evaluation of Biosensor Performance -- Suggested References -- References -- Problems -- 8. Directed Evolution for the Design of Macromolecular Bioassay Reagents -- 8.1 Introduction -- 8.2 Rational Design and Directed Evolution -- 8.3 Generation of Genetic Diversity -- 8.3.1 Polymerase Chain Reaction and Error-Prone PCR -- 8.3.2 DNA Shuffling -- 8.4 Linking Genotype and Phenotype -- 8.4.1 Cell Expression and Cell Surface Display (in vivo) -- 8.4.2 Phage Display (in vivo) -- 8.4.3 Ribosome Display (in vitro) -- 8.4.4 mRNA-Peptide Fusion (in vitro) -- 8.4.5 Microcompartmentalization (in vitro) -- 8.5 Identification and Selection of Successful Variants -- 8.5.1 Identification of Successful Variants Based on Binding Properties.

8.5.2 Identification of Successful Variants Based on Catalytic Activity -- 8.6 Directed Evolution of Galactose Oxidase -- Suggested References -- References -- Problems -- 9. Principles of Electrophoresis -- 9.1 Introduction -- 9.2 Electrophoretic Support Media -- 9.2.1 Paper -- 9.2.2 Starch Gels -- 9.2.3 Polyacrylamide Gels -- 9.2.4 Agarose Gels -- 9.2.5 Polyacrylamide-Agarose Gels -- 9.3 Effect of Experimental Conditions on Electrophoretic Separations -- 9.4 Electric Field Strength Gradients -- 9.5 Detection of Proteins and Nucleic Acids After Electrophoretic Separation -- 9.5.1 Stains and Dyes -- 9.5.2 Detection of Enzymes by Substrate Staining -- 9.5.3 The Southern Blot -- 9.5.4 The Northern Blot -- 9.5.5 The Western Blot -- 9.5.6 Detection of DNA Fragments on Membranes with DNA Probes -- Suggested References -- References -- Problems -- 10. Applications of Zone Electrophoresis -- 10.1 Introduction -- 10.2 Determination of Protein Net Charge and Molecular Weight Using PAGE -- 10.3 Determination of Protein Subunit Composition and Subunit Molecular Weights -- 10.4 Molecular Weight of DNA by Agarose Gel Electrophoresis -- 10.5 Identification of Isoenzymes -- 10.6 Diagnosis of Genetic (Inherited) Disease -- 10.7 DNA Fingerprinting and Restriction Fragment Length Polymorphism -- 10.8 DNA Sequencing with the Maxam-Gilbert Method -- 10.9 Immunoelectrophoresis -- Suggested References -- References -- Problems -- 11. Isoelectric Focusing -- 11.1 Introduction -- 11.2 Carrier Ampholytes -- 11.3 Modern IEF with Carrier Ampholytes -- 11.4 Immobilized pH Gradients (IPGs) -- 11.5 Two-Dimensional Electrophoresis -- Suggested References -- References -- Problems -- 12. Capillary Electrophoresis -- 12.1 Introduction -- 12.2 Electroosmosis -- 12.3 Elution of Sample Components -- 12.4 Sample Introduction -- 12.5 Detectors for Capillary Electrophoresis.

12.5.1 Laser-Induced Fluorescence Detection -- 12.5.2 Mass Spectrometric Detection -- 12.5.3 Amperometric Detection -- 12.5.4 Radiochemical Detection -- 12.6 Capillary Polyacrylamide Gel Electrophoresis (C-PAGE) -- 12.7 Capillary Isoelectric Focusing (CIEF) -- Suggested References -- References -- Problems -- 13. Centrifugation Methods -- 13.1 Introduction -- 13.2 Sedimentation and Relative Centrifugal g Force -- 13.3 Centrifugal Forces in Different Rotor Types -- 13.3.1 Swinging-Bucket Rotors -- 13.3.2 Fixed-Angle Rotors -- 13.3.3 Vertical Rotors -- 13.4 Clearing Factor (k) -- 13.5 Density Gradients -- 13.5.1 Materials Used to Generate a Gradient -- 13.5.2 Constructing Pre-Formed and Self-Generated Gradients -- 13.5.3 Redistribution of the Gradient in Fixed-Angle and Vertical Rotors -- 13.6 Types of Centrifugation Techniques -- 13.6.1 Differential Centrifugation -- 13.6.2 Rate-Zonal Centrifugation -- 13.6.3 Isopycnic Centrifugation -- 13.7 Harvesting Samples -- 13.8 Analytical Ultracentrifugation -- 13.8.1 Instrumentation -- 13.8.2 Sedimentation Velocity Analysis -- 13.8.3 Sedimentation Equilibrium Analysis -- 13.9 Selected Examples -- 13.9.1 Analytical Ultracentrifugation for Quaternary Structure Elucidation -- 13.9.2 Isolation of Retroviruses by Self-Generated Gradients -- 13.9.3 Isolation of Lipoproteins from Human Plasma -- Suggested References -- References -- Problems -- 14. Chromatography of Biomolecules -- 14.1 Introduction -- 14.2 Units and Definitions -- 14.3 Plate Theory of Chromatography -- 14.4 Rate Theory of Chromatography -- 14.5 Size Exclusion (Gel Filtration) Chromatography -- 14.6 Gel Matrices for Size Exclusion Chromatography -- 14.7 Affinity Chromatography -- 14.7.1 Immobilization of Affinity Ligands -- 14.7.2 Elution Methods -- 14.7.3 Determination of Association Constants by High-Performance Affinity Chromatography.

14.8 Ion-Exchange Chromatography.
Abstract:
Bioanalytical Chemistry provides a thorough introduction for students and practitioners with a broad range of backgrounds from chemistry to medicine. In so doing, it brings together many of the techniques commonly used by biochemists and molecular biologists. The text includes entire chapters on design and implementation of enzyme assays; mass spectrometry; and validation of new methods. Each chapter progresses from basic concepts to applications involving real samples, and ends with a set of problems, while an appendix contains selected answers. The authors have limited mathematical derivations to those that are essential for an understanding of each method and they include a list of suggested reading for further information. This textbook provides an ideal companion for students, researchers, and industrial scientists working in chemistry, biology, biochemistry, pharmacy, and medicine.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: