Cover image for Phased Array Antennas.
Phased Array Antennas.
Title:
Phased Array Antennas.
Author:
Hansen, Robert C.
ISBN:
9780470529171
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (571 pages)
Series:
Wiley Series in Microwave and Optical Engineering Ser. ; v.213

Wiley Series in Microwave and Optical Engineering Ser.
Contents:
Phased Array Antennas -- Contents -- Preface to the First Edition -- Preface to the Second Edition -- 1 Introduction -- 1.1 Array Background -- 1.2 Systems Factors -- 1.3 Annotated Reference Sources -- 1.3.1 Adaptive Antenna Reference Books -- References -- 2 Basic Array Characteristics -- 2.1 Uniformly Excited Linear Arrays -- 2.1.1 Patterns -- 2.1.2 Beamwidth -- 2.1.3 Sidelobes -- 2.1.4 Grating Lobes -- 2.1.5 Bandwidth -- 2.2 Planar Arrays -- 2.2.1 Array Coordinates -- 2.2.2 Beamwidth -- 2.2.3 Grating Lobes: Rectangular Lattice -- 2.2.4 Grating Lobes: Hexagonal Lattice -- 2.3 Beam Steering and Quantization Lobes -- 2.3.1 Steering Increment -- 2.3.2 Steering Bandwidth -- 2.3.3 Time Delay Deployment -- 2.3.4 Phaser Quantization Lobes -- 2.3.5 Sub-array Quantization Lobes -- 2.3.6 QL Decollimation: Overlapped Sub-arrays -- 2.4 Directivity -- 2.4.1 Linear Array Directivity -- 2.4.2 Directivity of Arrays of Short Dipoles -- 2.4.3 Directivity of Arrays of Resonant Elements -- 2.4.4 Planar Array Directivity -- References -- 3 Linear Array Pattern Synthesis -- 3.1 Introduction -- 3.1.1 Pattern Formulations -- 3.1.2 Physics versus Mathematics -- 3.1.3 Taylor Narrow-Beam Design Principles -- 3.2 Dolph-Chebyshev Arrays -- 3.2.1 Half-Wave Spacing -- 3.2.2 Spacing Less Than Half-Wave -- 3.3 Taylor One-Parameter Distribution -- 3.3.1 One-Parameter Design -- 3.3.2 Bickmore-Spellmire Two-Parameter Distribution -- 3.4 Taylor N-Bar Aperture Distribution -- 3.5 Low-Sidelobe Distributions -- 3.5.1 Comparison of Distributions -- 3.5.2 Average Sidelobe Level -- 3.6 Villeneuve N-Bar Array Distribution -- 3.7 Difference Patterns -- 3.7.1 Canonical Patterns -- 3.7.2 Bayliss Patterns -- 3.7.3 Sum and Difference Optimization -- 3.7.4 Discrete Zolotarev Distributions -- 3.8 Sidelobe Envelope Shaping -- 3.9 Shaped Beam Synthesis -- 3.9.1 Woodward-Lawson Synthesis.

3.9.2 Elliott Synthesis -- 3.10 Thinned Arrays -- 3.10.1 Probabilistic Design -- 3.10.2 Space Tapering -- 3.10.3 Minimum Redundancy Arrays -- Acknowledgment -- References -- 4 Planar and Circular Array Pattern Synthesis -- 4.1 Circular Planar Arrays -- 4.1.1 Flat Plane Slot Arrays -- 4.1.2 Hansen One-Parameter Pattern -- 4.1.3 Taylor Circular Pattern -- 4.1.4 Circular Bayliss Difference Pattern -- 4.1.5 Difference Pattern Optimization -- 4.2 Noncircular Apertures -- 4.2.1 Two-Dimensional Optimization -- 4.2.2 Ring Sidelobe Synthesis -- Acknowledgment -- References -- 5 Array Elements -- 5.1 Dipoles -- 5.1.1 Thin Dipoles -- 5.1.2 Bow-Tie and Open-Sleeve Dipoles -- 5.2 Waveguide Slots -- 5.2.1 Broad Wall Longitudinal Slots -- 5.2.2 Edge Slots -- 5.2.3 Stripline Slots -- 5.2.4 Open-End Waveguides -- 5.2.5 Substrate Integrated Waveguide -- 5.3 TEM Horns -- 5.3.1 Development of TEM Horns -- 5.3.2 Analysis and Design of Horns -- 5.3.3 TEM Horn Arrays -- 5.3.4 Millimeter Wave Antennas -- 5.4 Microstrip Patches and Dipoles -- 5.4.1 Transmission Line Model -- 5.4.2 Cavity and Other Models -- 5.4.3 Parasitic Patch Antennas -- 5.4.4 Balanced-Fed Patches -- Acknowledgments -- References -- 6 Array Feeds -- 6.1 Series Feeds -- 6.1.1 Resonant Arrays -- 6.1.1.1 Impedance and Bandwidth -- 6.1.1.2 Resonant Slot Array Design -- 6.1.2 Traveling Wave Arrays -- 6.1.2.1 Frequency Squint and Single-Beam Condition -- 6.1.2.2 Calculation of Element Conductance -- 6.1.2.3 TW Slot Array Design -- 6.1.3 Frequency Scanning -- 6.1.4 Phaser Scanning -- 6.2 Shunt (Parallel) Feeds -- 6.2.1 Corporate Feeds -- 6.2.2 Distributed Arrays -- 6.3 Two-Dimensional Feeds -- 6.3.1 Fixed-Beam Arrays -- 6.3.2 Sequential Excitation Arrays -- 6.3.3 Electronic Scan in One Plane -- 6.3.4 Electronic Scan in Two Planes -- 6.4 Photonic Feed Systems -- 6.4.1 Fiber Optic Delay Feeds.

6.4.1.1 Binary Delay Lines -- 6.4.1.2 Acousto-Optical Switched Delay -- 6.4.1.3 Modulators and Photodetectors -- 6.4.2 Wavelength Division Fiber Delay -- 6.4.2.1 Dispersive Fiber Delay -- 6.4.2.2 Bragg Fiber Grating Delay -- 6.4.2.3 Traveling Wave Fiber Delay -- 6.4.3 Optical Delay -- 6.4.4 Optical Fourier Transform -- 6.5 Systematic Errors -- 6.5.1 Parallel Phasers -- 6.5.2 Series Phasers -- 6.5.3 Systematic Error Compensation -- Acknowledgments -- References -- 7 Mutual Coupling -- 7.1 Introduction -- 7.2 Fundamentals of Scanning Arrays -- 7.2.1 Current Sheet Model -- 7.2.2 Free and Forced Excitations -- 7.2.3 Scan Impedance and Scan Element Pattern -- 7.2.3.1 Transmit versus Receive SEP -- 7.2.3.2 Measurement of Scan Impedance -- 7.2.4 Minimum Scattering Antennas -- 7.3 Spatial Domain Approaches to Mutual Coupling -- 7.3.1 Canonical Couplings -- 7.3.1.1 Dipole and Slot Mutual Impedance -- 7.3.1.2 Microstrip Patch Mutual Impedance -- 7.3.1.3 Horn Mutual Impedance -- 7.3.2 Impedance Matrix Solution -- 7.3.3 The Grating Lobe Series -- 7.4 Spectral Domain Approaches -- 7.4.1 Dipoles and Slots -- 7.4.2 Microstrip Patches -- 7.4.3 Printed Dipoles -- 7.4.4 Printed TEM Horns -- 7.4.5 Unit Cell Simulators -- 7.5 Scan Compensation and Blind Angles -- 7.5.1 Blind Angles -- 7.5.2 Scan Compensation -- 7.5.2.1 Coupling Reduction -- 7.5.2.2 Compensating Feed Networks -- 7.5.2.3 Multimode Elements -- 7.5.2.4 External Wave Filter -- Acknowledgment -- References -- 8 Finite Arrays -- 8.1 Methods of Analysis -- 8.1.1 Overview -- 8.1.2 Finite-by-Infinite Arrays -- 8.2 Scan Performance of Small Arrays -- 8.3 Finite-by-Infinite Array Gibbsian Model -- 8.3.1 Salient Scan Impedance Characteristics -- 8.3.2 A Gibbsian Model for Finite Arrays -- References -- 9 Superdirective Arrays -- 9.1 Historical Notes -- 9.2 Maximum Array Directivity.

9.2.1 Broadside Directivity for Fixed Spacing -- 9.2.2 Directivity as Spacing Approaches Zero -- 9.2.3 Endfire Directivity -- 9.2.4 Bandwidth, Efficiency, and Tolerances -- 9.3 Constrained Optimization -- 9.3.1 Dolph-Chebyshev Superdirectivity -- 9.3.2 Constraint on Q or Tolerances -- 9.4 Matching of Superdirective Arrays -- 9.4.1 Network Loss Magnification -- 9.4.2 HTS Arrays -- References -- 10 Multiple-Beam Antennas -- 10.1 Introduction -- 10.2 Beamformers -- 10.2.1 Networks -- 10.2.1.1 Power Divider BFN -- 10.2.1.2 Butler Matrix -- 10.2.1.3 Blass and Nolen Matrices -- 10.2.1.4 The 2D BFN -- 10.2.1.5 McFarland 2D Matrix -- 10.2.2 Lenses -- 10.2.2.1 Rotman Lens BFN -- 10.2.2.2 Bootlace Lenses -- 10.2.2.3 Dome Lenses -- 10.2.2.4 Other Lenses -- 10.2.3 Digital Beamforming -- 10.3 Low Sidelobes and Beam Interpolation -- 10.3.1 Low-Sidelobe Techniques -- 10.3.1.1 Interlaced Beams -- 10.3.1.2 Resistive Tapering -- 10.3.1.3 Lower Sidelobes via Lossy Networks -- 10.3.1.4 Beam Superposition -- 10.3.2 Beam Interpolation Circuits -- 10.4 Beam Orthogonality -- 10.4.1 Orthogonal Beams -- 10.4.1.1 Meaning of Orthogonality -- 10.4.1.2 Orthogonality of Distributions -- 10.4.1.3 Orthogonality of Arrays -- 10.4.2 Effects of Nonorthogonality -- 10.4.2.1 Efficiency Loss -- 10.4.2.2 Sidelobe Changes -- Acknowledgments -- References -- 11 Conformal Arrays -- 11.1 Scope -- 11.2 Ring Arrays -- 11.2.1 Continuous Ring Antenna -- 11.2.2 Discrete Ring Array -- 11.2.3 Beam Cophasal Excitation -- 11.3 Arrays on Cylinders -- 11.3.1 Slot Patterns -- 11.3.2 Array Pattern -- 11.3.2.1 Grating Lobes -- 11.3.2.2 Principal Sidelobes -- 11.3.2.3 Cylindrical Depolarization -- 11.3.3 Slot Mutual Admittance -- 11.3.3.1 Modal Series -- 11.3.3.2 Admittance Data -- 11.3.4 Scan Element Pattern -- 11.4 Sector Arrays on Cylinders -- 11.4.1 Patterns and Directivity.

11.4.2 Comparison of Planar and Sector Arrays -- 11.4.3 Ring and Cylindrical Array Hardware -- 11.5 Arrays on Cones and Spheres -- 11.5.1 Conical Arrays -- 11.5.1.1 Lattices on a Cone -- 11.5.1.2 Conical Depolarization and Coordinate Systems -- 11.5.1.3 Projective Synthesis -- 11.5.1.4 Patterns and Mutual Coupling -- 11.5.1.5 Conical Array Experiments -- 11.5.2 Spherical Arrays -- Acknowledgments -- References -- 12 Connected Arrays -- 12.1 History of Connected Arrays -- 12.2 Connected Array Principles -- 12.3 Connected Dipole Currents -- 12.3.1 Simulation Results: Current Phases -- 12.3.2 Simulation Results: Current Amplitudes -- 12.3.3 Simulation Results: SEP -- 12.4 Connection by Reactance -- 12.5 Connected Array Extensions -- References -- 13 Reflectarrays and Retrodirective Arrays -- 13.1 Reflectarrays -- 13.1.1 History of Reflectarrays -- 13.1.2 Geometric Design -- 13.1.3 Elements -- 13.1.4 Phasing of Elements -- 13.1.5 Bandwidth -- 13.1.6 Reflectarray Extensions -- 13.2 Retrodirective Arrays -- 13.2.1 History of Retrodirective Arrays -- 13.2.2 Recent Progress -- 13.2.3 Advanced Applications -- References -- 14 Reflectors with Arrays -- 14.1 Focal Plane Arrays -- 14.1.1 Focal Plane Fields and Coma -- 14.1.2 Recovering Coma Scan Loss -- 14.1.3 Coma Correction Limitations -- 14.2 Near-Field Electromagnetic Optics -- 14.2.1 Near-Field Cassegrain -- 14.2.1.1 System Trades and Restrictions -- 14.2.2 Near-Field Gregorian -- References -- 15 Measurements and Tolerances -- 15.1 Measurement of Low-Sidelobe Patterns -- 15.2 Array Diagnostics -- 15.3 Waveguide Simulators -- 15.4 Array Tolerances -- 15.4.1 Directivity Reduction and Average Sidelobe Level -- 15.4.2 Beam Pointing Error -- 15.4.3 Peak Sidelobes -- Acknowledgment -- References -- Author Index -- Subject Index.
Abstract:
An in-depth treatment of array phenomena and all aspects of phased array analysis and design Phased Array Antennas, Second Edition is a comprehensive reference on the vastly evolving field of array antennas. The Second Edition continues to provide an in-depth evaluation of array phenomena with a new emphasis on developments that have occurred in the field over the past decade. The book offers the same detailed coverage of all practical and theoretical aspects of phased arrays as the first edition, but it now includes: New chapters on array-fed reflector antennas; connected arrays; and reflect arrays and retrodirective arrays Brand-new coverage of artificial magnetic conductors, and Bode matching limitations A clear explanation of the common misunderstanding of scan element pattern measurement, along with appropriate equations In-depth coverage of finite array Gibbsian models, photonic feeding and time delay, waveguide simulators, and beam orthogonality The book is complemented with a multitude of original curves and tables that illustrate how particular behaviors were derived from the author's hundreds of programs developed over the past forty years. Additionally, numerous computer design algorithms and numerical tips are included throughout the book to help aid in readers' comprehension. Phased Array Antennas, Second Edition is an ideal resource for antenna design engineers, radar engineers, PCS engineers, and communications engineers, or any professional who works to develop radar and telecommunications systems. It also serves as a valuable textbook for courses in phased array design and theory at the upper-undergraduate and graduate levels.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: