Cover image for Waves in Metamaterials.
Waves in Metamaterials.
Title:
Waves in Metamaterials.
Author:
Solymar, Laszlo.
ISBN:
9780191550560
Personal Author:
Physical Description:
1 online resource (420 pages)
Contents:
Contents -- 1 Basic concepts and basic equations -- 1.1 Introduction -- 1.2 Newton's equation and electrical conductivity -- 1.3 Maxwell's equations, fields and potentials -- 1.4 The wave equation and boundary conditions -- 1.5 Hollow metal waveguides -- 1.6 Refraction at a boundary: Snell's law and the Ewald circle construction -- 1.7 Fermat's principle -- 1.8 The optical path and lens design -- 1.9 The effective ε in the presence of a current -- 1.10 Surface waves -- 1.11 Plane wave incident upon a slab -- 1.12 Dipoles -- 1.13 Poynting vector -- 1.14 Radiation resistance -- 1.15 Permittivity and permeability tensors -- 1.16 Polarizability -- 1.17 Working with tensors -- 1.18 Dispersion: forward and backward waves -- 1.19 Mutual impedance and mutual inductance -- 1.20 Kinetic inductance -- 1.21 Four-poles: impedance and chain matrices -- 1.22 Transmission line equations -- 1.23 Waves on four-poles -- 1.24 Scattering coefficients -- 1.25 Fourier transform and the transfer function -- 2 A bird's-eye view of metamaterials -- 2.1 Introduction -- 2.2 Natural and artificial materials -- 2.3 Determination of the effective permittivity/dielectric constant in a natural material -- 2.4 Effective plasma frequency of a wire medium -- 2.5 Resonant elements for metamaterials -- 2.6 Loading the transmission line -- 2.6.1 By resonant magnetic elements in the form of LC circuits -- 2.6.2 By metallic rods -- 2.6.3 By a combination of resonant magnetic elements and metallic rods -- 2.7 Polarizability of a current-carrying resonant loop: radiation damping -- 2.8 Effective permeability -- 2.9 Dispersion equation of magnetoinductive waves derived in terms of dipole interactions -- 2.10 Backward waves and negative refraction -- 2.11 Negative-index materials -- 2.11.1 Do they exist? -- 2.11.2 Terminology -- 2.11.3 Negative-index lenses -- 2.11.4 The flat-lens family.

2.11.5 Experimental results and numerical simulations -- 2.11.6 Derivation of material parameters from reflection and transmission coefficients -- 2.12 The perfect lens -- 2.12.1 Does it exist? -- 2.12.2 The ideal situation, ε[sub(r)] = -1 and μ[sub(r)] = -1 -- 2.12.3 The periodic solution -- 2.12.4 The electrostatic limit: does it exist? -- 2.12.5 Far field versus near field: Veselago's lens versus Pendry's lens -- 2.13 Circuits revisited -- 3 Plasmon-polaritons -- 3.1 Introduction -- 3.2 Bulk polaritons. The Drude model -- 3.3 Surface plasmon-polaritons. Semi-infinite case, TM polarization -- 3.3.1 Dispersion. Surface plasmon wavelength -- 3.3.2 Effect of losses. Propagation length -- 3.3.3 Penetration depth -- 3.3.4 Field distributions in the lossless case -- 3.3.5 Poynting vector: lossless and lossy -- 3.4 Surface plasmon-polaritons on a slab: TM polarization -- 3.4.1 The dispersion equation -- 3.4.2 Field distributions -- 3.4.3 Asymmetric structures -- 3.5 Metal-dielectric-metal and periodic structures -- 3.6 One-dimensional confinement: shells and stripes -- 3.7 SPP for arbitrary ε and μ -- 3.7.1 SPP dispersion equation for a single interface -- 3.7.2 Domains of existence of SPPs for a single interface -- 3.7.3 SPP at a single interface to a metamaterial: various scenarios -- 3.7.4 SPP modes for a slab of a metamaterial -- 4 Small resonators -- 4.1 Introduction -- 4.2 Early designs: a historical review -- 4.3 A roll-call of resonators -- 4.4 A mathematical model and further experimental results -- 4.4.1 Distributed circuits -- 4.4.2 Results -- 4.4.3 A note on higher resonances -- 5 Subwavelength imaging -- 5.1 Introduction -- 5.2 The perfect lens: controversy around the concept -- 5.2.1 Battle of wits -- 5.2.2 Non-integrable fields -- 5.2.3 High spatial frequency cutoff -- 5.3 Near-perfect lens -- 5.3.1 Introduction.

5.3.2 Field quantities in the three regions -- 5.3.3 Effect of losses: Transfer function, cutoff, electrostatic limit -- 5.3.4 Lossless near-perfect lens with ε[sub(r)] ≃ -1, μ[sub(r)] ≃ -1 -- 5.3.5 Near-perfect? Near-sighted! -- 5.3.6 General cutoff frequency relationships -- 5.3.7 Effect of discretization in numerical simulations -- 5.4 Negative-permittivity lens -- 5.4.1 Introduction -- 5.4.2 Dependence on thickness -- 5.4.3 Field variation in the lens -- 5.4.4 Other configurations: compression -- 5.4.5 The electrostatic approximation revisited -- 5.4.6 Experimental results -- 5.5 Multilayer superlens -- 5.6 Magnifying multilayer superlens -- 5.7 Misconceptions -- 6 Phenomena in waveguides -- 6.1 Introduction -- 6.2 Propagation in cutoff waveguides -- 6.3 Filters in coplanar and microstrip waveguides -- 6.4 Tunnelling -- 6.5 Phase shifters -- 6.6 Waveguide couplers -- 6.7 Imaging in two dimensions: transmission-line approach -- 7 Magnetoinductive waves I -- 7.1 Introduction -- 7.2 Dispersion relations -- 7.3 Matching the transmission line -- 7.4 Excitation -- 7.5 Eigenvectors and eigenvalues -- 7.6 Current distributions -- 7.7 Poynting vector -- 7.8 Power in a MI wave -- 7.9 Boundary reflection and transmission -- 7.10 Tailoring the dispersion characteristics: biperiodic lines -- 7.11 Experimental results -- 7.12 Higher-order interactions -- 7.13 Coupled one-dimensional lines -- 7.14 Rotational resonance -- 7.15 Applications -- 7.15.1 Introduction -- 7.15.2 Waveguide components -- 7.15.3 Imaging -- 7.15.4 Detection of nuclear magnetic resonance -- 8 Magnetoinductive waves II -- 8.1 MI waves in two dimensions -- 8.1.1 Introduction -- 8.1.2 Dispersion equation, group velocity, power density -- 8.1.3 Reflection and refraction -- 8.1.4 Excitation by a point source: reflection and diffraction -- 8.1.5 Spatial resonances in hexagonal lattices.

8.1.6 Imaging -- 8.2 MI waves retarded -- 8.2.1 Introduction -- 8.2.2 Dispersion equation -- 8.2.3 The nature of the dispersion equation -- 8.2.4 A 500-element line -- 8.2.5 Conclusions -- 8.3 Non-linear effects in magnetoinductive waves -- 8.3.1 Introduction -- 8.3.2 Phase matching -- 8.3.3 Theoretical formulation of amplification for the single array -- 8.3.4 Theoretical formulation for the coupled arrays -- 8.3.5 MRI detector -- 9 Seven topics in search of a chapter -- 9.1 Introduction -- 9.2 Further imaging mechanisms -- 9.2.1 Parallel sheets consisting of resonant elements -- 9.2.2 Channelling by wire structures -- 9.2.3 Imaging by photonic crystals -- 9.3 Combinations of negative-permittivity and negative-permeability layers -- 9.4 Indefinite media -- 9.5 Gaussian beams and the Goos-Hanchen shift -- 9.6 Waves on nanoparticles -- 9.7 Refractive index close to zero -- 9.7.1 Introduction -- 9.7.2 Wavefront conversion -- 9.7.3 Effect of low phase variation -- 9.8 Invisibility and cloaking -- 10 A historical review -- 10.1 Introduction -- 10.2 Forerunners -- 10.2.1 Effective-medium theory -- 10.2.2 Negative permittivity -- 10.2.3 Negative permeability -- 10.2.4 Plasmon-polaritons -- 10.2.5 Backward waves -- 10.2.6 Theory of periodic structures -- 10.2.7 Resonant elements small relative to the wavelength -- 10.2.8 Chiral materials -- 10.2.9 Faster than light -- 10.2.10 Frequency filters made of periodically arranged resonant elements -- 10.2.11 Slow-wave structures -- 10.2.12 Waves arising from nearest-neighbour interactions -- 10.2.13 Superdirectivity, superresolution, subwavelength focusing and imaging -- 10.2.14 Inverse scattering -- 10.2.15 Bianisotropy -- 10.2.16 Photonic bandgap materials -- 10.2.17 Waves on nanoparticles -- 10.3 ... and the subject went on and flourished... -- A: Acronyms.

B: Field at the centre of a cubical lattice of identical dipoles -- C: Derivation of material parameters from reflection and transmission coefficients -- D: How does surface charge appear in the boundary conditions? -- E: The Brewster wave -- F: The electrostatic limit -- F.1 Single interface -- F.2 Symmetric slab -- G: Alternative derivation of the dispersion equation for SPPs for a dielectric-metal-dielectric structure: presence of a surface charge -- H: Electric dipole moment induced by a magnetic field perpendicular to the plane of the SRR -- I: Average dielectric constants of a multilayer structure -- J: Derivation of mutual inductance between two magnetic dipoles in the presence of retardation -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- V -- W -- Z.
Abstract:
Metamaterials is a subject born in the 21st century. It is concerned with artificial materials which can have electrical and magnetic properties difficult or impossible to find in nature. The mathematics of the book is within the power of final year undergraduates: the aim is to explain the physics in simple terms and enumerate the major advances.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: