
Clustering Challenges in Biological Networks.
Title:
Clustering Challenges in Biological Networks.
Author:
Butenko, Sergiy.
ISBN:
9789812771667
Personal Author:
Physical Description:
1 online resource (347 pages)
Contents:
Contents -- Preface -- Part 1 Surveys of Selected Topics -- 1. Fixed-Parameter Algorithms for Graph-Modeled Data Clustering F. Hüffner, R. Niedermeier and S. Wernicke -- 1.1. Introduction -- 1.2. Fixed-Parameter Tractability Basics and Techniques -- 1.2.1. Kernelizations -- 1.2.1.1. An Introductory Example -- 1.2.1.2. The Kernelization Concept -- 1.2.2. Depth-Bounded Search Trees -- 1.3. CaseStudies fromGraph-ModeledDataClustering -- 1.3.1. Clique -- 1.3.1.1. Finding Maximum Cardinality Cliques -- 1.3.1.2. Enumerating Maximal Cliques -- 1.3.2. Cluster Editing -- 1.3.3. Clique Cover -- 1.4. Conclusion -- 1.4.1. Practical Guidelines -- 1.4.2. Challenges -- References -- 2. Probabilistic Distance Clustering: Algorithm and Applications C. Iyigun and A. Ben-Israel -- 2.1. Introduction -- 2.2. Probabilistic {d,q}-Clustering -- 2.2.1. Probabilities -- 2.2.2. The Joint Distance Function -- 2.2.3. An Extremal Principle -- 2.2.4. An Extremal Principle for the Cluster Sizes -- 2.2.5. Centers -- 2.2.6. The Centers and the Joint Distance Function -- 2.3. ThePDQAlgorithm -- 2.4. Estimation of Parameters of Normal Distribution -- 2.4.1. A Comparison of the PDQ Algorithm (Algorithm 1) and the EM Method (Algorithm 2) -- 2.5. Numerical Experiments -- 2.6. Multi-Facility Location Problems -- 2.6.1. Fermat-Weber Location Problem -- 2.6.2. Multiple Facility Location Problem -- 2.7. Determining the "Right"Number of Clusters -- References -- 3. Analysis of Regulatory and Interaction Networks from Clusters of Co-expressed Genes E. Yang, A. Misra, T. J. Maguire and I. P. Androulakis -- 3.1. Identification of Intervention Targets: Regulatory and Interaction Networks -- 3.1.1. Identification of Informative Temporal Expression Patterns -- 3.2. Analysis of Regulatory Networks -- 3.2.1. Expression Data -- 3.2.2. Regulatory Network Construction and Analysis.
3.3. Analysis of InteractionNetworks -- 3.3.1. Expression Data -- 3.3.2. Interaction Network Construction and Analysis -- 3.4. Intervention Strategies -- Acknowledgements -- References -- 4. Graph-based Approaches for Motif Discovery E. Zaslavsky -- 4.1. Introduction -- 4.2. Graph-Theoretic Formulation -- 4.3. Linear Programming-based Algorithms -- 4.3.1. Edge-Modeling Formulation -- 4.3.1.1. Graph Pruning -- 4.3.2. Cost-Aggregating Formulation -- 4.4. Maximum Density Subgraph-based Algorithm -- 4.5. Subtle Motif Algorithms -- 4.5.1. Winnowing Techniques -- 4.5.2. Clique Finding with Consensus Constraint -- 4.6. Discussion -- Acknowledgements -- References -- 5. Statistical Clustering Analysis: An Introduction H. Zhang -- 5.1. Introduction -- 5.2. Similarity (Dissimilarity) Measures -- 5.2.1. Measures for Observation Clustering -- 5.2.1.1. Euclidean Distance and Minkowski Distance -- 5.2.1.2. Mahalanobis Distance -- 5.2.1.3. Cosine -- 5.2.2. Measures for Variable Clustering -- 5.2.2.1. Pearson's Correlation Coefficient -- 5.2.2.2. Mutual Information -- 5.3. Clustering Algorithm -- 5.3.1. K-Means Algorithm -- 5.3.2. E-M Algorithm -- 5.3.3. Hierarchical Clustering -- 5.3.4. Self-Organizing Map -- 5.4. Determining the Number of Clusters -- 5.4.1. Model-based Method -- 5.4.2. Scale-based Method -- References -- Part 2 New Methods and Applications -- 6. Diversity Graphs P. Blain, C. Davis, A. Holder, J. Silva and C. Vinzant -- 6.1. Introduction -- 6.2. Notation, Definitions and Preliminary Results -- 6.3. Graphs That Support Diversity -- 6.4. Algorithms and Solutions for the Pure Parsimony Problem -- 6.5. Directions for Future Research -- References -- 7. Identifying Critical Nodes in Protein-Protein Interaction Networks V. Boginski and C. W. Commander -- 7.1. Introduction -- 7.2. Protein-Protein Interaction Networks.
7.3. Optimization Approaches for Critical Node Detection -- 7.3.1. The Critical Node Detection Problem -- 7.3.2. Cardinality Constrained Problem -- 7.4. Heuristic Approaches for Critical Node Detection -- 7.4.1. Multi-Start Combinatorial Heuristic -- 7.4.2. Genetic Algorithms -- 7.5. Computational Experiments -- 7.6. Conclusions -- References -- 8. Faster Algorithms for Constructing a Concept (Galois) Lattice V. Choi -- 8.1. Introduction -- 8.2. Background and Terminology on FCA -- 8.3. BasicProperties -- 8.3.1. Defining the Equivalence Classes -- 8.3.2. Characterizations of Closure -- 8.4. Algorithm: Constructing a Concept/Galois Lattice -- 8.4.1. High-Level Idea -- 8.4.2. Implementation -- 8.4.2.1. Further Improvement: Dynamically Update Adjacency Lists -- 8.5. Variants of theAlgorithm -- 8.5.1. Algorithm 2: Computing All Concepts or Maximal Bipartite Cliques -- 8.5.2. Algorithm 3: Constructing a Closed Itemset Lattice -- 8.6. Discussion -- Acknowledgment -- References -- Appendix -- 9. A Projected Clustering Algorithm and Its Biomedical Application P. Deng, Q. Ma and W. Wu -- 9.1. Introduction -- 9.2. RelatedWorks -- 9.2.1. Density-based Algorithms -- 9.2.2. Distance-based Algorithms -- 9.3. The IPROCLUSAlgorithm -- 9.3.1. Modified Manhattan Segmental Distance -- 9.3.2. Initialization Phase -- 9.3.3. Iterative Phase -- 9.3.3.1. Simplified Replacing Logic -- 9.3.4. Refinement Phase -- 9.3.4.1. Dimension Tuning Process -- 9.4. EmpiricalResults -- 9.4.1. Synthetic Data Generation -- 9.4.2. Results on Synthetic Datasets -- 9.4.3. Results on the Colon Tumor Dataset -- 9.5. Conclusion -- References -- 10. Graph Algorithms for Integrated Biological Analysis, with Applications to Type 1 Diabetes Data J. D. Eblen, I. C. Gerling, A. M. Saxton, J. Wu, J. R. Snoddy and M. A. Langston -- 10.1. Overview -- 10.2. Description ofData.
10.3. Correlation Computations -- 10.4. Clique and Its Variants -- 10.5. Statistical Evaluation and Biological Relevance -- 10.6. ProteomicData Integration -- 10.7. Remarks -- Acknowledgments -- References -- 11. A Novel Similarity-based Modularity Function for Graph Partitioning Z. Feng, X. Xu, N. Yuruk and T. Schweiger -- 11.1. Introduction -- 11.2. RelatedWork -- 11.3. A Novel Similarity-based Modularity -- 11.4. A Genetic Graph Partitioning Algorithm -- 11.5. AFastAgglomerativeAlgorithm -- 11.6. EvaluationResults -- 11.6.1. Tests on Synthetic Graphs -- 11.6.2. Real Applications -- 11.7. Conclusion -- References -- 12. Mechanism-based Clustering of Genome-wide RNA Levels: Roles of Transcription and Transcript-Degradation Rates S. Ji, W. A. Chaovalitwongse, N. Fefferman, W. Yoo and J. E. Perez-Ortin -- 12.1. Introduction -- 12.2. Materials and Data Acquisition -- 12.2.1. Glucose-Galactose Shift Experiments -- 12.2.2. Measuring Transcription Rates (TR) Using the Genomic Run-on (GRO) Method -- 12.2.3. Measuring mRNA or Transcript Levels (TL) -- 12.2.4. The TL-TR Plots -- 12.3. StatisticalAnalysis -- 12.3.1. Calibration of TL Data -- 12.3.2. Calibration of TR Data -- 12.3.3. Kinetic Analysis of the Changes in mRNA Levels -- 12.3.4. Transcript-Degradation to Transcription (D/T) Ratios -- 12.4. Experimental Results -- 12.5. Conclusion and Discussion -- Acknowledgments -- References -- 13. The Complexity of Feature Selection for Consistent Biclustering O. E. Kundakcioglu and P. M. Pardalos -- 13.1. Introduction -- 13.2. Consistent Biclustering -- 13.3. Complexity Results -- 13.4. Closing Remarks -- References -- 14. Clustering Electroencephalogram Recordings to Study Mesial Temporal Lobe Epilepsy C.-C. Liu, W. Suharitdamrong, W. A. Chaovalitwongse, G. A. Ghacibeh and P. M. Pardalos -- 14.1. Introduction -- 14.2. Epilepsy as aDynamicalBrainDisorder.
14.3. Data Information -- 14.4. Graph-TheoreticModeling forBrainConnectivity -- 14.4.1. Cross-Mutual Information (CMI) -- 14.4.2. Maximum Clique Algorithm -- 14.5. Results -- 14.6. Conclusion and Discussion -- Acknowledgment -- References -- 15. Relating Subjective and Objective Pharmacovigilance Association Measures R. K. Pearson -- 15.1. Introduction -- 15.2. Aggregate Associations -- 15.3. Subjective Associations -- 15.4. Case-Specific Associations -- 15.5. Relations between Measures -- 15.6. Clustering Drugs -- 15.6.1. The Case Study -- 15.6.2. The Clustering Approach -- 15.6.3. Summary of the Results -- 15.7. Interpreting the Clusters -- 15.8. Summary -- References -- 16. A Novel Clustering Approach: Global Optimum Search with Enhanced Positioning M. P. Tan and C. A. Floudas -- 16.1. Introduction -- 16.2. Methods -- 16.2.1. Experimental Data -- 16.2.2. Theoretical and Computational Framework -- 16.2.2.1. Notation -- 16.2.2.2. Hard Clustering by Global Optimization -- 16.2.2.3. The GOS Algorithm for Clustering -- 16.2.2.4. Determining the Optimal Number of Clusters -- 16.2.3. Proposed Algorithm -- 16.3. Results and Discussion -- 16.3.1. Description of Comparative Study -- 16.3.2. Intra-cluster Error Sum -- 16.3.3. Inter-cluster Error Sum -- 16.3.4. Difference between Intra-cluster and Inter-cluster Error Sums -- 16.3.5. Optimal Number of Clusters -- 16.3.6. Coherence and Biological Relevance -- 16.3.7. Additional Constraints for Large Datasets -- 16.4. Conclusion -- 16.5. Computational Resources -- Acknowledgements -- References -- Index.
Abstract:
This volume presents a collection of papers dealing with various aspects of clustering in biological networks and other related problems in computational biology. It consists of two parts, with the first part containing surveys of selected topics and the second part presenting original research contributions. This book will be a valuable source of material to faculty, students, and researchers in mathematical programming, data analysis and data mining, as well as people working in bioinformatics, computer science, engineering, and applied mathematics. In addition, the book can be used as a supplement to any course in data mining or computational/systems biology.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View