
Nonlinear Conservation Laws, Fluid Systems and Related Topics.
Title:
Nonlinear Conservation Laws, Fluid Systems and Related Topics.
Author:
Chen, Gui-Qiang.
ISBN:
9789814273282
Personal Author:
Physical Description:
1 online resource (401 pages)
Series:
Series in Contemporary Applied Mathematics, 13
Contents:
Contents -- Preface -- Thomas Y. Hou, Xinwei Yu: Introduction to the Theory of Incompressible Inviscid Flows -- Abstract -- 1 Introduction -- 2 Derivation and exact solutions -- 2.1 Derivation of the Euler equations -- 2.2 The Vorticity-Stream function formulation -- 2.2.1 Vorticity -- 2.2.2 Vorticity-Stream function formulation -- 2.2.3 2D Euler equations -- 2.3 Conserved quantities -- 2.3.1 Local conserved quantities -- 2.3.2 Global conserved quantities -- 2.4 Special flows -- 2.4.1 Axisymmetric flow -- 2.4.2 Radially (circularly) symmetric flow -- 2.4.3 Jets and strains -- 3 Local well-posedness of the 3D Euler equation -- 3.1 Analytical preparations -- 3.1.1 Sobolev spaces -- 3.1.2 Hodge decomposition and the Leray projection -- 3.1.3 The Aubin-Lions lemma -- 3.1.4 Calculus inequalities -- 3.1.5 Gronwall's inequality -- 3.2 Properties of mollifiers -- 3.3 Global existence of the mollified equation -- 3.4 Local existence of the Euler equations -- 4 The BKM blow-up criterion -- 4.1 The Beale-Kato-Majda criterion -- 4.2 Improvements of the BKM criterion -- 5 Recent global existence results -- 5.1 Sufficient conditions by Constantin-FeffermanMajda -- 5.2 Sufficient conditions by Deng-Hou-Yu -- 6 Lower dimensional models for the 3D Euler equations -- 6.1 1-D model -- 6.2 The 2-D QG equation -- 6.2.1 Existence and blow-up criteria -- 6.2.2 Global existence result by Constantin-Majda-Tabak -- 6.2.3 Global existence result by Cordoba and Fefferman -- 6.2.4 Final remarks about the QG equation -- 7 Vortex patch -- 7.1 The contour dynamics equation (eDE) -- 7.2 Levelset formulation and global existence -- References -- Denis Serre: Systems of Conservation Laws. Theory, Numerical Approximation and Discrete Shock Profiles. -- 1 Hyperbolic systems of conservation laws -- 1.1 The Cauchy problem: classical solutions -- 1.1.1 Hyperbolicity -- 1.1.2 Entropies.
1.1.3 Local well-posedness in HS(jRd) -- 1.2 The Cauchy problem: weak solutions -- 1.2.1 Break-down of smooth solutions -- 1.2.2 Weak solutions -- 1.2.3 The Rankine-Hugoniot condition -- 1.2.4 Non-uniqueness of weak solutions -- 1.2.5 Entropy admissibility condition -- 1.2.6 The viscosity approach -- 1.2.7 The scalar case -- 1.3 Shock waves -- 1.3.1 The Hugoniot locus -- 1.3.2 Genuine nonlinearity -- 1.3.3 The Lax shock inequality -- 1.3.4 Viscous shock profiles -- 1.4 The Riemann problem -- 1.4.1 Rarefaction waves -- 1.4.2 Contact discontinuities -- 1.4.3 The theorem of Lax -- 1.5 Existence of viscous shock profiles -- 1.5.1 The scalar case -- 1.5.2 Reduction to a center manifold (bifurcation analysis) -- 1.5.3 Lax shocks -- 1.5.4 Under-compressive shocks -- 2 Finite difference schemes -- 2.1 Conservative schemes -- 2.1.1 Consistency -- 2.1.2 Order of accuracy -- 2.1.3 Linearized L2-stability -- 2.1.4 The Courant-Friedrichs-Lewy condition -- 2.1.5 Entropy-consistent schemes -- 2.2 Examples -- 2.2.1 The naive centered scheme -- 2.2.2 The Lax-Friedrichs scheme -- 2.2.3 The Lax-Wendroff scheme -- 2.2.4 The Godunov scheme -- 2.3 Schemes for scalar equations -- 2.3.1 Monotone schemes -- 2.3.2 Kutznetsov's error estimate -- 3 Discrete shock profiles -- 3.1 DSPs and conservation -- 3.1.1 The function Y -- 3.1.2 Scalar case: monotone schemes -- 3.2 Existence theory for rational N -- 3.2.1 DSPs for small steady Lax shocks -- 3.2.2 DSPs for steady Lax shocks: the Godunov scheme -- 3.2.3 What can go wrong? -- References -- Seiji Ukai, Tong Yang: Kinetic Theory and Conservation Laws: An Introduction. -- Abstract -- 1 Introduction -- 1.1 Overview -- 1.2 Boltzmann equation -- 1.2.1 Intuitive derivation -- 1.2.2 Collision invariants and H functional -- 1.2.3 Assumptions on cross-sections -- 1.2.4 Basic properties of the collision operators.
2 Expansions and their unification -- 2.1 Classical expansions -- 2.2 Unification by decomposition -- 3 Detour to hyperbolic conservation laws -- 3.1 Scalar conservation laws -- 3.2 Riemann problem for systems -- 3.3 Well-posedness theory for systems -- 3.3.1 Existence -- 3.3.2 Stability and uniqueness -- 3.4 Vanishing viscosity -- 4 Spectral analysis on the linearized Boltzmann operator -- 4.1 Smoothing properties of etA -- 4.2 Spectral properties of B -- 4.3 Decay rates of etB in Xf3 -- 4.4 Effect of external force -- 5 Global existence and convergence rates -- 5.1 Global existence -- 5.2 Optimal convergence rates -- 5.3 External force, revisited -- References -- Xiaoming Wang: Elementary Statistical Theories with Applications to Fluid Systems. -- 1 Introduction -- 1.1 Why statistical description -- 1.2 What characterizes statistical behavior -- 1.3 Relative stability of statistical solution over single trajectories -- 2 Stationary statistics -- 2.1 Invariant measures and stationary statistical solutions -- 2.2 Definition, existence -- 2.3 Ergodicity -- 2.4 Invariant measure, stationary statistical solution and attractor -- 2.5 Dependence on parameters -- 2.6 Regular perturbation -- 2.7 Singular perturbation -- 2.8 Remarks on direct applications -- 2.8.1 An application to NSE: energy dissipation rate per unit mass -- 2.8.2 An application to RBC: heat transfer in the vertical direction (N usselt number) -- 2.9 Maximum entropy principle -- 2.10 Application to ODEs -- 2.11 Application to basic geophysical systems -- 3 Remarks on time dependent statistics -- 3.1 Definition, existence -- 3.2 Applications to NSE -- 3.2.1 Reynolds equation for the average flow -- 3.2.2 Moment closure problem -- 3.2.3 Fluctuation dissipation theory (FDT) -- Appendix: some useful theorems -- References -- Yuxi Zheng: The Compressible Euler System in Two Space Dimensions.
Abstract -- Introduction -- 1 Physical phenomena and mathematical problems -- 1.1 Euler system in n dimensions -- 1.2 Phenomena -- 1.3 Mathematical treatment -- 1.4 Paradoxes -- 1.5 The 8th millennium priceless problem -- 2 Characteristic decomposition of the pseudo-steady case -- 2.1 Riemann problems -- 2.2 Isentropic system -- 2.3 Some explicit solutions -- 2.4 A characteristic decomposition -- 2.4.1 Introduction to the method of characteristics -- 2.4.2 Decomposition -- 3 The hodograph transformation and the interaction of rarefaction waves -- 3.1 Primary system -- 3.2 The concept of hodograph transformation -- 3.2.1 The hodograph transformation for the pseudo-steady Euler -- 3.2.2 Steady Euler -- 3.2.3 Similarity to one-dimensional problems -- 3.3 Characteristics in both planes -- 3.4 Phase space system of equations -- 3.5 Planar rarefaction waves -- 3.6 The gas expansion problem -- 3.6.1 Planar rarefaction waves in a given direction -- 3.6.2 A wedge of gas -- 3.6.3 A wedge of gas in the hodograph plane -- 3.6.4 Local existence -- 3.6.5 Statement of main existence -- 3.6.6 The maximum norm estimate on (o:,(3,c) -- 3.6.7 Gradient estimates and the proof of Theorem 3.3 -- 3.6.8 Inversion -- 3.6.9 Proof of Theorem 3.4 -- 3.6.10 Properties of the solutions -- 3.7 Summary remarks -- 3.8 Appendix A: simple waves -- 3.8.1 Concept of simple waves -- 3.8.2 Simple waves for pseudo-steady Euler equations -- Appendix B: convertibility -- 4 Local solutions for quasilinear systems -- 4.1 Introduction -- 4.2 Existence of solutions to the Cauchy problem -- 4.2.1 Primary representations -- 4.2.2 Primary estimates -- 4.2.3 Estimates on modulus of continuity -- 4.2.4 Lipschitz data -- 4.3 Goursat problem -- 4.4 Mixed initial-boundary value problem -- 4.5 Application to 2-D Euler -- 5 Invariant regions for systems -- 5.1 Basic theorems -- 5.2 Examples.
6 The pressure gradient system -- 6.1 Introduction -- 6.1.1 Derivation -- 6.1.2 Progress of research -- 6.1.3 One-dimensional planar waves -- 6.2 Two-dimensional Riemann problems -- 6.3 Subsonic region -- 6.4 Four-wave interaction -- 7 Open problems -- Epilogue: Stories -- References.
Abstract:
This book is a collection of lecture notes on Nonlinear Conservation Laws, Fluid Systems and Related Topics delivered at the 2007 Shanghai Mathematics Summer School held at Fudan University, China, by world's leading experts in the field. The volume comprises five chapters that cover a range of topics from mathematical theory and numerical approximation of both incompressible and compressible fluid flows, kinetic theory and conservation laws, to statistical theories for fluid systems. Researchers and graduate students who want to work in this field will benefit from this essential reference as each chapter leads readers from the basics to the frontiers of the current research in these areas.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View