
Differential Geometry Applied to Dynamical Systems.
Title:
Differential Geometry Applied to Dynamical Systems.
Author:
Ginoux, Jean-Marc.
ISBN:
9789814277150
Personal Author:
Physical Description:
1 online resource (341 pages)
Series:
World Scientific Series on Nonlinear Science: Series A, 66 ; v.v. 66
World Scientific Series on Nonlinear Science: Series A, 66
Contents:
Contents -- Preface -- Acknowledgments -- List of Figures -- List of Examples -- Dynamical Systems -- 1. Differential Equations -- 1.1 Galileo's pendulum -- 1.2 D'Alembert transformation -- 1.3 From differential equations to dynamical systems -- 2. Dynamical Systems -- 2.1 State space - phase space -- 2.2 Definition -- 2.3 Existence and uniqueness -- 2.4 Flow, fixed points and null-clines -- 2.5 Stability theorems -- 2.5.1 Linearized system -- 2.5.2 Hartman-Grobman linearization theorem -- 2.5.3 Liapouno. stability theorem -- 2.6 Phase portraits of dynamical systems -- 2.6.1 Two-dimensional systems -- 2.6.2 Three-dimensional systems -- 2.7 Various types of dynamical systems -- 2.7.1 Linear and nonlinear dynamical systems -- 2.7.2 Homogeneous dynamical systems -- 2.7.3 Polynomial dynamical systems -- 2.7.4 Singularly perturbed systems -- 2.7.5 Slow-Fast dynamical systems -- 2.8 Two-dimensional dynamical systems -- 2.8.1 Poincare index -- 2.8.2 Poincare contact theory -- 2.8.3 Poincare limit cycle -- 2.8.4 Poincare-Bendixson Theorem -- 2.9 High-dimensional dynamical systems -- 2.9.1 Attractors -- 2.9.2 Strange attractors -- 2.9.3 First integrals and Lie derivative -- 2.10 Hamiltonian and integrable systems -- 2.10.1 Hamiltonian dynamical systems -- 2.10.2 Integrable system -- 2.10.3 K.A.M. Theorem -- 3. Invariant Sets -- 3.1 Manifold -- 3.1.1 Definition -- 3.1.2 Existence -- 3.2 Invariant sets -- 3.2.1 Global invariance -- 3.2.2 Local invariance -- 4. Local Bifurcations -- 4.1 CenterManifold Theorem -- 4.1.1 Center manifold theorem for flows -- 4.1.2 Center manifold approximation -- 4.1.3 Center manifold depending upon a parameter -- 4.2 Normal FormTheorem. -- 4.3 Local Bifurcations of Codimension 1 -- 4.3.1 Saddle-node bifurcation -- 4.3.2 Transcritical bifurcation -- 4.3.3 Pitchfork bifurcation -- 4.3.4 Hopf bifurcation.
5. Slow-Fast Dynamical Systems -- 5.1 Introduction -- 5.2 Geometric Singular Perturbation Theory -- 5.2.1 Assumptions -- 5.2.2 Invariance -- 5.2.3 Slow invariant manifold -- 5.3 Slow-fast dynamical systems - Singularly perturbed systems -- 5.3.1 Singularly perturbed systems -- 5.3.2 Slow-fast autonomous dynamical systems -- 6. Integrability -- 6.1 Integrability conditions, integrating factor, multiplier -- 6.1.1 Two-dimensional dynamical systems -- 6.1.2 Three-dimensional dynamical systems -- 6.2 First integrals - Jacobi's last multiplier theorem -- 6.2.1 First integrals -- 6.2.2 Jacobi's last multiplier theorem -- 6.3 Darboux theory of integrability -- 6.3.1 Algebraic particular integral - General integral -- 6.3.2 General integral -- 6.3.3 Multiplier -- 6.3.4 Algebraic particular integral and fixed points -- 6.3.5 Homogeneous polynomial dynamical systems of degree m -- 6.3.6 Homogeneous polynomial dynamical systems of degree two -- 6.3.7 Planar polynomial dynamical systems -- Differential Geometry -- 7. Differential Geometry -- 7.1 Concept of curves - Kinematics vector functions -- 7.1.1 Trajectory curve -- 7.1.2 Instantaneous velocity vector -- 7.1.3 Instantaneous acceleration vector -- 7.2 Gram-Schmidt process - Generalized Frénet moving frame -- 7.2.1 Gram-Schmidt process -- 7.2.2 Generalized Frénetmoving frame -- 7.3 Curvatures of trajectory curves - Osculating planes -- 7.4 Curvatures and osculating plane of space curves -- 7.4.1 Frenet trihedron - Serret-Frenet formulae -- 7.4.2 Osculating plane -- 7.4.3 Curvatures of space curves -- 7.5 Flow curvaturemethod -- 7.5.1 Flow curvature manifold -- 7.5.2 Flow curvaturemethod -- 8. Dynamical Systems -- 8.1 Phase portraits of dynamical systems -- 8 .1.1 Fixed points -- 8.1.2 Stability theorems -- 9. Invariant Sets -- 9.1 Invariantmanifolds -- 9.1.1 Global invariance -- 9.1.2 Local invariance.
9.2 Linear invariantmanifolds -- 9.3 Nonlinear invariantmanifolds -- 10. Local Bifurcations -- 10.1 Center Manifold -- 10.1.1 Center manifold approximation -- 10.1.2 Center manifold depending upon a parameter -- 10.2 Normal Form Theorem. -- 10.3 Local bifurcations of codimension 1 -- 11. Slow-Fast Dynamical Systems -- 11.1 Slow manifold of n-dimensional slow-fast dynamical systems -- 11.2 Invariance -- 11.3 Flow Curvature Method - Singular Perturbation Method -- 11.3.1 Darboux invariance - Fenichel's invariance -- 11.3.2 Slow invariant manifold -- 11.4 Non-singularly perturbed systems -- 12. Integrability -- 12.1 First integral -- 12.1.1 Global first integral -- 12.1.2 Local first integral -- 12.2 Linear invariant manifolds as first integral -- 12.3 Darboux theory of integrability -- 12.3.1 General integral - Multiplier -- 12.3.2 Darboux homogeneous polynomial dynamical systems of degree two -- 12.3.3 Planar polynomial dynamical systems -- 13. Inverse Problem -- 13.1 Flow curvature manifold of polynomial dynamical systems -- 13.1.1 Two-dimensional polynomial dynamical systems -- 13.1.2 Three-dimensional polynomial dynamical systems -- 13.2 Flow curvature manifold symmetry (parity) -- 13.2.1 Two-dimensional polynomial dynamical systems -- 13.2.2 n-dimensional polynomial dynamical systems -- 13.3 Inverse problem for polynomial dynamical systems -- 13.3.1 Two-dimensional polynomial dynamical systems -- 13.3.2 Three-dimensional polynomial dynamical systems -- Applications -- 14. Dynamical Systems -- 14.1 FitzHugh-Nagumomodel -- 14.2 Pikovskii-Rabinovich-Trakhtengerts model -- 15. Invariant Sets - Integrability -- 15.1 Pikovskii-Rabinovich-Trakhtengerts model -- 15.2 Rikitakemodel -- 15.3 Chua'smodel -- 15.4 Lorenzmodel -- 16. Local Bifurcations -- 16.1 Chua'smodel -- 16.2 Lorenz model -- 17. Slow-Fast Dynamical Systems - Singularly Perturbed Systems.
17.1 Piecewise Linear Models 2D & 3D -- 17.1.1 Van der Pol piecewise linear model -- 17.1.2 Chua's piecewise linear model -- 17.2 Singularly Perturbed Systems 2D & 3D -- 17.2.1 FitzHugh-Nagumo model -- 17.2.2 Chua's model -- 17.3 Slow Fast Dynamical Systems 2D & 3D -- 17.3.1 Brusselator model -- 17.3.2 Pikovskii-Rabinovich-Trakhtengerts model -- 17.3.3 Rikitake model -- 17.4 Piecewise Linear Models 4D & 5D -- 17.4.1 Chua's fourth-order piecewise linear model -- 17.4.2 Chua's .fth-order piecewise linear model -- 17.5 Singularly Perturbed Systems 4D & 5D -- 17.5.1 Chua's fourth-order cubic model -- 17.5.2 Chua's fifth-order cubic model -- 17.6 Slow Fast Dynamical Systems 4D & 5D -- 17.6.1 Homopolar dynamo model -- 17.6.2 Mofatt model -- 17.6.3 Magnetoconvection model -- 17.7 Slow manifold gallery -- 17.8 Forced Van der Polmodel -- Discussion -- Appendix A -- A.1 Lie derivative -- A.2 Hessian -- A.3 Jordan form -- A.4 Connected region -- A.5 Fractal dimension -- A.5.1 Kolmogorov or capacity dimension -- A.5.2 Liapounoff exponents - Wolf, Swinney, Vastano algorithm -- A.5.3 Liapounoff dimension and Kaplan-Yorke conjecture -- A.5.4 Liapounoff dimension and Chlouverakis-Sprott conjecture -- A.6 Identities -- A.6.1 Concept of curves -- A.6.2 Gram-Schmidt process and Frénet moving frame -- A.6.3 Frénet trihedron and curvatures of space curves -- A.6.4 First identity -- A.6.5 Second identity -- A.6.6 Third identity -- A.7 Homeomorphismand diffeomorphism. -- A.7.1 Homeomorphism. -- A.7.2 Diffeomorphism -- A.8 Differential equations -- A.8.1 Two-dimensional dynamical systems -- A.8.2 Three-dimensional dynamical systems -- A.9 Generalized Tangent Linear System Approximation -- A.9.1 Assumptions -- A.9.2 Corollaries -- Mathematica Files -- Bibliography -- Index.
Abstract:
This book aims to present a new approach called Flow Curvature Method that applies Differential Geometry to Dynamical Systems. Hence, for a trajectory curve, an integral of any n-dimensional dynamical system as a curve in Euclidean n-space, the curvature of the trajectory - or the flow - may be analytically computed. Then, the location of the points where the curvature of the flow vanishes defines a manifold called flow curvature manifold. Such a manifold being defined from the time derivatives of the velocity vector field, contains information about the dynamics of the system, hence identifying the main features of the system such as fixed points and their stability, local bifurcations of codimension one, center manifold equation, normal forms, linear invariant manifolds (straight lines, planes, hyperplanes). In the case of singularly perturbed systems or slow-fast dynamical systems, the flow curvature manifold directly provides the slow invariant manifold analytical equation associated with such systems. Also, starting from the flow curvature manifold, it will be demonstrated how to find again the corresponding dynamical system, thus solving the inverse problem.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View