
Thermal Quantum Field Theory : Algebraic Aspects and Applications.
Title:
Thermal Quantum Field Theory : Algebraic Aspects and Applications.
Author:
Khanna, Faqir C.
ISBN:
9789812818898
Personal Author:
Physical Description:
1 online resource (482 pages)
Contents:
Contents -- Preface -- Part I - General Principles -- 1. Elements of Thermodynamics -- 1.1 Kinematical aspects of thermal physics -- 1.2 Dynamical aspects of thermal physics -- 1.3 Equations of state -- 1.4 The meaning of intensive variables -- 1.5 Thermodynamical potentials -- 1.6 Gibbs-Duhem relation -- 1.7 Second derivatives -- 1.8 Example: ideal gas and generalizations -- 1.8.1 State equation for an ideal gas -- 1.8.2 The van der Waals equation -- 1.9 Stability conditions and phase transitions -- 2. Elements of Statistical Mechanics -- 2.1 Macro- and micro-physics -- 2.2 Liouville-von Neumann equation -- 2.3 Gibbs ensembles -- 2.3.1 Micro-canonical ensemble -- 2.3.2 Canonical ensemble -- 2.3.3 Grand-canonical ensemble -- 2.3.4 Equivalence among the ensembles -- 2.4 Wigner function formalism -- 3. Partition Function and Path Integral -- 3.1 Partition function and the propagator -- 3.2 Path integral in quantum mechanics -- 3.3 Classical fields -- 3.4 Canonical quantization of scalar fields -- 3.5 Path integral for a scalar field -- 3.6 Canonical quantization of the Dirac field -- 3.7 Path integral for the Dirac field -- 4. Zero Temperature Interacting Fields -- 4.1 Generating functional for bosons -- 4.1.1 Feynman rules in momentum space -- 4.2 The effective action -- 4.3 Gauge fields -- 4.4 Generating functional for gauge fields -- 4.5 U(1) gauge theory -- 4.6 SU(3) gauge theory -- 4.7 Scattering amplitudes -- 4.8 S-matrix in the canonical approach -- Part II - Thermal Fields -- 5. Thermo eld Dynamics: Kinematical Symmetry Algebraic Basis -- 5.1 Thermal Hilbert space -- 5.2 The meaning of the doubling: thermo-algebras -- 5.2.1 Generators of symmetry and observables -- 5.2.2 Doubled Lie algebra -- 5.2.3 Tilde conjugation rules -- 5.3 Tilde and non-tilde operators -- 5.4 Liouville-von Neumann equation.
5.5 Physical implications of thermo-algebras -- 6. Thermal Oscillators: Bosons and Fermions -- 6.1 Boson oscillators -- 6.1.1 Thermal vacuum -- 6.1.2 Bogoliubov transformation -- 6.1.3 Thermal operators -- 6.1.4 Matrix notation -- 6.2 Fermion oscillators -- 6.2.1 Thermal vacuum -- 6.2.2 Bogoliubov transformation -- 6.2.3 Thermal operators -- 6.2.4 Matrix notation -- 6.3 TFD and spin 1/2 lattices -- 6.3.1 Boson representation for the SU(2) algebra -- 6.3.2 Thermo-SU(2) algebra -- 7. Thermal Poincar e and Galilei Groups -- 7.1 The Poincar e group -- 7.2 Relativistic density matrices -- 7.2.1 Bosons -- 7.2.2 Fermions -- 7.3 The Galilei group -- 7.4 Galilean density matrices -- 7.5 Lagrangians -- 8. Thermal Propagator -- 8.1 Thermal Klein-Gordon field -- 8.2 Thermal Dirac field -- 8.3 Doubled notation for bosons -- 8.4 Generating functional for bosons -- 8.5 Generating functional for fermions -- 8.6 Thermal gauge fields -- 9. Scattering Process at Finite Temperature -- 9.1 Scattering matrix in TFD -- 9.2 Reaction rates -- 9.3 Decay of particles and generalized Cutkosky rules -- 9.4 Decay of Higgs meson -- 9.5 The detailed balance -- 9.6 Scattering cross-section of 1 + 2 ! 10 + 20 -- 9.6.1 Boson-boson scattering -- 9.6.2 Fermion-fermion scattering -- 9.7 Fermion-boson scattering -- 10. Topics on Renormalization Theory -- 10.1 Ultraviolet divergences -- 10.2 Regularization -- 10.3 Renormalization -- 10.3.1 Renormalization parts in the 4 theory -- 10.3.2 The Callan-Zimanzik equation -- 10.4 Bogoliubov recurrence -- 10.4.1 Dimensional renormalization -- 10.4.2 Other renormalization procedures -- 10.4.3 Borel summability -- 10.5 Temperature effects -- 11. Ward-Takahashi Relations and Gauge Symmetry -- 11.1 Ward relation -- 11.2 Ward-Takahashi relations -- 11.3 Applications of generalized Ward-Takahashi relations.
11.3.1 W-T relations for the case of n-body current amplitudes -- 11.3.2 Ward-Takahashi relations at nite temperature -- 11.4 Transverse Ward-Takahashi relations -- 11.5 Transverse W-T relation in momentum space -- 11.5.1 Full vertex for the fermion-gauge boson vertex -- 11.5.2 Tranverse W-T relation for axial current -- 11.5.3 Transverse W-T relation at nite temperature -- 11.6 W-T relations and spontaneous symmetry breaking -- Part III - Applications to Quantum Optics -- 12. Thermalized States of a Field Mode -- 12.1 Thermalized states -- 12.1.1 Thermal number states -- 12.1.2 Thermal coherent states -- 12.1.3 Thermal displaced number states -- 12.1.4 Thermal squeezed states -- 12.2 Physical interpretation -- 12.3 Other possibilities of thermalized states -- 12.3.1 Thermal tilde states -- 12.3.2 Physical meaning of the thermal tilde states -- 12.3.3 General states of HT -- 13. Nonclassical Properties of Thermal Quantum States -- 13.1 Photon statistics -- 13.1.1 Thermal states -- 13.1.2 Thermal tilde states -- 13.2 Quadrature squeezing -- 13.3 Atomic population inversion -- 13.4 Phase space representation -- 13.4.1 Q-function of the thermal number state -- 13.4.2 Wigner function of the thermal number state -- 13.4.3 R-representation and nonclassical depth of the thermal number state -- 13.4.4 Phase space representations of the thermal tilde number state -- 14. SU(2) and SU(1 -- 1) Systems: Entanglement -- 14.1 Maximum entanglement -- 14.2 Maximally entangled states and SU(1 -- 1) symmetry -- 14.3 Maximally entangled states and SU(2) symmetry -- 14.4 Entanglement of a system with fixed spin -- 14.5 Entanglement of two-boson squeezed states -- 14.6 Coherent fermion states and density matrix operators -- 14.7 Entanglement of two-mode squeezed fermion states -- Part IV - Compactified Fields -- 15. Compactified Fields.
15.1 Compactification and topology -- 15.1.1 Compactification of one space dimension -- 15.1.2 Compactification of time dimension -- 15.1.3 Compactification of space and time -- 15.1.4 Compactification in d-dimensions -- 15.2 Generalized Bogoliubov transformation -- 15.3 Field theory -- 15.4 Feynman rules -- 16. Casimir Effect for the Electromagnetic Field -- 16.1 The vacuum state of the electromagnetic field -- 16.2 The Casimir effect -- 16.2.1 Casimir effect at zero temperature -- 16.2.2 Casimir effect at non-zero temperature -- 16.3 Casimir-Boyer model -- 17. Casimir Effect for Fermions -- 17.1 Casimir effect in -- 17.2 Compactification in higher dimensions -- 17.3 Casimir effect for two plates -- 17.4 Casimir effect for a waveguide -- 17.5 Casimir effect for a box -- 17.6 Casimir effect for a non-interacting massless QCD -- 18. Compactified '4 Theory -- 18.1 Compactification of a d-dimensional subspace -- 18.2 Subtraction scheme -- 18.3 The zero-temperature compacti ed model -- 18.3.1 Wick-ordered model -- 18.3.2 The model without Wick-ordering -- 18.4 The compactified model at finite temperature: spontaneous symmetry breaking -- 18.4.1 Mass behavior and critical curve -- 19. Phase Transitions in Con ned Systems: Application to Superconducting Films -- 19.1 Overview -- 19.2 Second-order phase transition in superconducting films -- 19.2.1 The effective potential for the Ginzburg-Landau model with one compactified dimension -- 19.3 Mass renormalization and transition temperature -- 19.3.1 Effect of the coupling-constant correction on Tc(L) -- 19.4 Critical behavior of type-II superconducting films in a magnetic field -- 19.4.1 Coupling-constant correction in the presence of an external magnetic field -- 19.4.2 The gap equation and the critical curve -- 20. Second-Order Phase Transition in Wires and Grains.
20.1 Compactification of a d-dimensional subspace -- 20.2 Critical behavior for wires -- 20.3 Critical behavior for grains -- 20.4 Boundary effects on the coupling constant -- 20.5 Effects of the boundary-corrected coupling constant on the critical behavior -- 20.5.1 Effects of the boundary-corrected coupling constant on the phase transition for wires -- 20.5.2 Effects of the boundary-corrected coupling constant on the phase transition for grains -- 20.6 Universal behavior of size-effects in second-order phase transitions -- 21. First-Order Phase Transitions in Confined Systems -- 21.1 Effective potential with compactification of a d-dimensional subspace -- 21.2 The film, the wire and the grain -- Part V - Applications to Open Systems -- 22. Thermo-Algebras in Phase Space: Quantum and Classical Systems -- 22.1 Wigner function for the Schr odinger field -- 22.2 Wigner function for the Klein-Gordon field -- 22.3 Wigner function for the Dirac field -- 22.4 Representations for classical systems -- 22.4.1 Thermo-Lie groups for classical systems -- 22.4.2 SU(1 -- 1) and the thermal classical oscillator -- 22.5 Classical unitary representations -- 22.6 Liouville equation for the oscillator -- 22.7 Non-relativistic symmetries in the Sch onberg-Fock space -- 22.8 Classical relativistic representation -- 22.9 Boltzmann equation and non-relativistic limit -- 23. Real-Time Method for Nonequilibrium Quantum Mechanics -- 23.1 Schr odinger, Heisenberg and Liouville pictures -- 23.2 Linear model for phase transition -- 23.3 Nonlinear model for phase transition -- 23.3.1 Correlation functions in coherent state -- 23.3.2 Correlation functions in thermal state -- 23.4 Beyond the Hartree approximation for nonlinear model -- 23.4.1 Beyond the Hartree approximation -- 23.4.2 Stability of the Liouville-von Neumann method -- 23.5 TFD for time-dependent boson system.
24. Dressed and Bare State Approaches to the Thermalization Process.
Abstract:
This monograph presents recent developments in quantum field theory at finite temperature. By using Lie groups, ideas from thermal theory are considered with concepts of symmetry, allowing for applications not only to quantum field theory but also to transport theory, quantum optics and statistical mechanics. This includes an analysis of geometrical and topological aspects of spatially confined systems with applications to the Casimir effect, superconductivity and phase transitions. Finally, some developments in open systems are also considered. The book provides a unified picture of the fundamental aspects in thermal quantum field theory and their applications, and is important to the field as a result, since it combines several diverse ideas that lead to a better understanding of different areas of physics.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View