
Biomechanical Systems Technology : Muscular Skeletal Systems (4-Volume Set).
Title:
Biomechanical Systems Technology : Muscular Skeletal Systems (4-Volume Set).
Author:
Leondes, Cornelius T.
ISBN:
9789812771384
Personal Author:
Physical Description:
1 online resource (316 pages)
Contents:
CONTENTS -- Preface -- Chapter 1 Articular Cartilage Biomechanics, Mechanobiology, and Tissue Engineering Eugene Koay and Kyriacos Athanasiou -- 1. Introduction -- 2. Native Biomechanical Structure-Function Relationships -- 2.1. Structural components of native articular cartilage -- 2.1.1. Composition -- 2.1.2. Tissue architecture -- 2.1.3. Chondrocytes -- 2.1.4. Chondrons -- 2.2. Biomechanical physiology of articular cartilage -- 2.2.1. Biomechanical development -- 2.2.2. Biomechanical regulation -- 3. Future Directions for Native Biomechanical Structure-Function Investigations -- 4. Tissue Engineering of Articular Cartilage -- 4.1. Standards for tissue engineering studies -- 4.2. Building blocks for engineering articular cartilage -- 4.2.1. Biomaterials -- 4.2.2. Cell source -- 4.3. External stimuli -- 4.3.1. Bioactive agents -- 4.3.2. Biophysical forces -- 5. Future Directions for Articular Cartilage Tissue Engineering -- 6. Conclusions -- Acknowledgments -- References -- Chapter 2 Techniques in Modern Gait Analysis and Their Application to the Study of Knee Osteoarthritis J. L. Astephen and K. J. Deluzio -- 1. Introduction -- 2. Measurement of Gait -- 3. The Nature of Gait Data -- 3.1. Variability -- 3.2. Dimensionality -- 4. Gait Data Analysis in the Study of Knee Osteoarthritis -- 4.1. Parameter-based analyses -- 4.2. Waveform-based analyses -- 4.2.1. Principal component analysis -- 4.2.2. Other waveform-based analysis techniques for gait data -- 4.3. Multivariate analyses -- 5. Biomechanical Factors of Knee Osteoarthritis -- 5.1. Kinematics -- 5.1.1. Stride characteristics -- 5.1.2. Joint angles -- 5.2. Kinetics -- 5.2.1. The knee adduction moment -- 6. Challenges in the Analyses of Knee Osteoarthritis -- 6.1. Gait disease severity -- 6.2. Confounding variables -- 6.2.1. Speed -- 6.2.2. Obesity -- 6.2.3. Age -- 6.2.4. Sex.
7. Future Directions in Gait Analysis for Knee Osteoarthritis: Multivariate, Multidisciplinary, Multi-Center Analyses -- References -- Chapter 3 Finite Element Modeling of the Microarchitecture of Cancellous Bone: Techniques and Applications Amit Gefen -- 1. Introduction -- 2. General Considerations and Finite Element Techniques in Models of Normal and Osteoporotic Cancellous Bone -- 2.1. Microarchitectural properties of cancellous bone -- 2.1.1. Shape of individual trabeculae -- 2.1.2. Trabecular structures and the role of intertrabecular connectivity -- 2.2. Mechanical properties of cancellous bone -- 2.2.1. Tissue-level properties -- 2.2.2. Apparent properties -- 2.3. Finite element modeling of cancellous bone -- 2.3.1. Concepts of finite element modeling as applied to cancellous bone -- 2.3.2. Micro-imaging-based cancellous bone models -- 2.3.3. Generic lattice cancellous bone models -- 3. Model Applications to Load-Bearing Phenomena in Normal and Osteoporotic Cancellous Bone -- 3.1. Compression behavior of cancellous bone -- 3.2. Strain inhomogeneity in trabeculae -- 3.3. Buckling behavior of trabeculae -- 4. Concluding Remarks -- Acknowledgments -- References -- Chapter 4 Effect of Stress Ratio and Stress Frequency on Fatigue Behavior of Compact Bone S. Ishihara, M. Ota, B. L. Ding, C. Fleck, T. Goshima and D. Eifler -- 1. Introduction -- 2. Modeling of Bone Tissue -- 3. Computer Simulation of Bone's Fatigue Process -- 3.1. Distribution of initial crack length -- 3.2. Calculation of the range of energy release rate G -- 3.3. Threshold for crack propagation -- 3.4. Crack propagation -- 3.5. Fracture criterion for each member -- 3.6. Criterion for specimen failure -- 4. Specimen and Experimental Method -- 5. Effect of Stress Ratio -- 5.1. Experimental results -- 5.2. Comparison between simulation and experiment (stress ratio) -- 5.2.1. S-N curve.
5.2.2. Variation of Young's modulus E/E0 during fatigue process -- 6. Effect of Stress Frequency -- 6.1. Experimental results -- 6.1.1. Relationship between number of cycles to failure Nf and maximum stress σmax -- 6.1.2. Crack propagation behavior for bovine cortical bone -- 6.2. Comparison between simulation and experiment -- 6.2.1. S-N curve -- 6.2.2. Estimated relation between fatigue lives Nf as a function of stress frequency -- 7. Conclusions -- Acknowledgment -- References -- Chapter 5 Kinematic Analysis Techniques and Their Application in Biomechanics Rita Stagni, Silvia Fantozzi, Andrea G. Cutti and Angelo Cappello -- 1. Introduction -- 2. Methods -- 2.1. Stereophotogrammetry -- 2.1.1. Instrumental errors -- 2.1.2. Anatomical landmarks misplacement -- 2.1.3. Soft tissue artifact -- 2.2. Single-plane fluoroscopy -- 2.2.1. The fluoroscope device -- 2.2.2. Pose estimation -- 2.2.2.1. 3D/3D alignment approach -- 2.2.2.2. 2D/3D alignment approach -- 2.3. Inertial sensors -- 2.3.1. Accelerometers -- 2.3.2. Gyroscopes -- 2.3.3. Application in human movement analysis -- 3. Applications -- 3.1. Soft tissue artifacts: Quantification and compensation -- 3.1.1. Upper limb -- 3.1.2. Lower limb -- 3.2. Joint modeling -- 3.3. Kinematic analysis of the upper extremity -- 3.3.1. Assessment of an above-elbow amputee and his innovative prosthesis -- 3.3.1.1. Subject description and prosthesis setup -- 3.3.1.2. Motion analysis protocol and data analysis -- 3.3.1.3. Elbow performance -- 3.3.1.4. Subject movements for prosthesis control -- 3.3.2. The evolution of compensation strategies in a patient with shoulder instability -- 3.3.2.1. Motion analysis protocol -- 3.3.2.2. Patient description -- 3.3.2.3. Results -- 3.3.2.4. Discussion and conclusions -- 4. Conclusions -- Acknowledgments -- References.
Chapter 6 Structural Analysis of Skeletal Body Elements: Numerical and Experimental Methods Elisabetta M. Zanetti and Cristina Bignardi -- 1. Introduction: The Origins of Structural Biomechanics -- 2. Numerical Analysis -- 2.1. The geometrical model -- 2.2. Volume meshing -- 2.2.1. Notch effect -- 2.3. Bone mechanical properties -- 2.3.1. Bone density and the main mechanical properties -- 2.3.2. Bone anisotropy -- 2.3.3. Influence of strain rate -- 2.3.4. Influence of age on bone mechanical properties -- 2.3.5. Influence of sex on bone mechanical properties -- 2.3.6. Effect of temperature -- 2.3.7. Element type -- 2.4. Boundary conditions: Loads and constraints -- 2.5. Linear and nonlinear analyses -- 2.6. Dynamic analyses -- 2.7. Post-processing -- 2.8. Notes on bone remodeling -- 3. Experimental Analysis -- 3.1. Specimens -- 3.1.1. Wet bone and dry bone -- 3.1.2. Specimen variability -- 3.1.3. A viable solution: Synthetic bones -- 3.2. Loading and constraining -- 3.2.1. Simple constraining -- 3.2.2. Large displacements -- 3.2.3. Simulation of muscle forces -- 3.2.4. An example: Femur loading -- 3.3. Instrumentation -- 3.4. Strain gauges -- 3.5. Photoelasticity -- 3.6. Laser holography -- 3.7. Thermoelastic stress analysis -- 3.8. Thermoelastic stress analysis of anisotropic materials -- 3.8.1. Application of TSA on second-generation femurs -- 3.8.2. Application of TSA on third generation femurs -- 3.9. Dynamic analysis of bones -- 4. Conclusions -- References -- Chapter 7 Indentation Technique for Simultaneous Estimation of Young's Modulus and Poisson's Ratio of Soft Tissues Pong-Chi Choi, Hang-Yin Ling and Yong-Ping Zheng -- 1. Introduction -- 2. Methodologies -- 2.1. Two different sized indentors -- 2.2. A single indentation -- 3. Finite Element Analysis -- 4. Results and Discussion -- 4.1. Two different sized indentors.
4.2. A single indentation -- 5. Conclusions -- Acknowledgments -- References -- Chapter 8 Wear Phenomena in Knee Prostheses and Their Finite Element Analyses Changhee Cho, Teruo Murakami, Yoshinori Sawae, Nobuo Sakai, Hiromasa Miura and Yukihide Iwamoto -- 1. Introduction -- 2. Observation of Wear Characteristics of UHMWPE Tibial Inserts in Retrieved Knee Prostheses -- 2.1. Materials and methods -- 2.2. Results and discussion -- 2.3. Conclusions for retrieval study -- 3. Elasto-Plastic Contact Analysis of Simplified Artificial Knee Joint Using Finite Element Method -- 3.1. Methods -- 3.1.1. FEM modeling and analysis conditions -- 3.1.2. Experiments for FEM material model -- 3.1.3. Knee joint simulator test -- 3.2. Results and discussion -- 3.2.1. FEM analysis -- 3.2.2. Knee joint simulator test -- 3.3. Conclusions for FEM analysis of simplified artificial knee joint -- 4. Elasto-Plastic Contact Analysis of a UHMWPE Tibial Insert Based on Geometrical Measurement from a Retrieved Knee Prosthesis -- 4.1. Materials and methods -- 4.1.1. Materials -- 4.1.2. FEM modeling and analysis conditions -- 4.1.3. Experiment for determination of contact position -- 4.2. Results -- 4.3. Discussion -- 4.4. Conclusion for FEM analysis based on geometrical measurement -- 5. Summary and Conclusions -- Acknowledgments -- References -- Chapter 9 Tribology of Metal-on-Metal Arti.cial Hip Joints Zhong Min Jin, Sophie Williams, Joanne Tipper, Eileen Ingham and John Fisher -- 1. Introduction: Hip Joints and Replacements -- 1.1. Natural hip joints -- 1.2. Arti.cial hip joint replacements -- 1.3. Wear and wear debris related problems -- 1.4. Hip joint replacement with alternative bearing surfaces -- 2. A Brief Account of the Historical Development of Metal-on-Metal Hip Joint Replacements -- 2.1. Pre-1950 -- 2.2. Between the 1950s and 1980s -- 2.3. Between the 1980s and the 1990s.
2.4. Post-1990.
Abstract:
Because of rapid developments in computer technology and computational techniques, advances in a wide spectrum of technologies, coupled with cross-disciplinary pursuits between technology and its application to human body processes, the field of biomechanics continues to evolve. Many areas of significant progress include dynamics of musculoskeletal systems, mechanics of hard and soft tissues, mechanics of bone remodeling, mechanics of blood and air flow, flow-prosthesis interfaces, mechanics of impact, dynamics of man-machine interaction, and more. Thus, the great breadth and significance of the field in the international scene require a well integrated set of volumes to provide a complete coverage of the exciting subject of biomechanical systems technology. World-renowned contributors tackle the latest technologies in an in-depth and readable manner.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View