Cover image for Control of Chaos in Nonlinear Circuits and Systems.
Control of Chaos in Nonlinear Circuits and Systems.
Title:
Control of Chaos in Nonlinear Circuits and Systems.
Author:
Ling, Bingo Wing-Kuen.
ISBN:
9789812790576
Personal Author:
Physical Description:
1 online resource (281 pages)
Series:
World Scientific Series on Nonlinear Science: Series A
Contents:
CONTENTS -- Preface -- Section A: General Chaos Control Methods -- 1. Robust Synchronization of Chaotic Systems based on Time-delayed Feedback Control H. Huang and G. Feng -- 1.1. Introduction -- 1.2. Problem Formulation -- 1.3. Delay-Independent Synchronization Criterion -- 1.4. Delay-Dependent Synchronization Criteria -- 1.6 will be less conservative than Theorems 1.2 and 1.4 due to the increasing freedom of these slack variables. -- 1.5. A Simulation Example -- 1.6. Conclusion -- Acknowledgement -- References -- 2. Synchronization of Uncertain Chaotic Systems based on Fuzzy-model-based Approach H.K. Lam and F.H.F. Leung -- 2.1. Introduction -- 2.2. Fuzzy Model and Switching Controller -- 2.2.1. Fuzzy Model -- 2.2.2. Switching Controller -- 2.2.3. Error System -- 2.3. Stability Analysis -- 2.4. Simulation Examples -- 2.4.1. Rössler and Lorenz Systems -- 2.4.1.1. The Dynamics of the Response Rössler's System -- 2.4.1.2. The Dynamics of the Lorenz System -- 2.4.1.3. The Dynamics of the Proposed Switching Controller -- 2.4.2. Chua's and Lorenz Systems -- 2.4.2.1. The Dynamics of the Response Chua's System -- 2.4.2.2. The Dynamics of the Lorenz System -- 2.4.2.3. The Dynamics of the Switching Controller -- 2.5. Conclusion -- Acknowledgement -- References -- 3. Sliding Mode Control of Chaotic Systems Y. Feng and X. Yu -- 3.1. Introduction -- 3.2. Sliding Mode Control -- 3.3. Chaos Control -- 3.4. Chaos Synchronization -- 3.4.1. Synchronization of Chaotic System Using Observer -- 3.4.2. Chaos Synchronization Using a Robust Sliding Mode Observer -- 3.4.3. Implementation of Chaos Synchronization -- 3.4.4. Multi-dimensional Signals Transmission via One Signal Transmission Channel -- 3.4.5. Synchronization of Chaotic Systems with Multi-nonlinearities -- 3.5. Conclusions -- References.

4. A New Two-stage Method for Nonparametric Regression with Jump Points C.Z. Wu, C.M. Liu, K.L. Teo and Q.X. Shao -- 4.1. Introduction -- 4.2. Estimation for Potential Jump Points -- 4.3. Segmented Regression with Constraints -- 4.4. A Time Scaling Transformation Method -- 4.5. Model Selection -- 4.6. Numerical Example -- 4.7. Conclusion -- References -- Section B: Chaos Control for Continuous-time Systems -- 5. Chaos Control for Chua's Circuits L.A.B. Tôrres, L.A. Aguirre, R.M. Palhares and E.M.A.M. Mendes -- 5.1. Introduction -- 5.2. Chua's Circuit Implementation -- 5.2.1. An Overview of Chua's Circuit -- 5.2.2. An Inductorless Version of the Circuit -- 5.2.3. PCChua { A Versatile Experimental Platform -- 5.3. Chua's Circuit Data Analysis and Modeling -- 5.3.1. The Issue of Observability -- 5.3.2. Higher-order Spectral Analysis -- 5.3.2.1. The Main Concepts -- 5.3.2.2. The Results -- 5.3.3. Discrete-time Global Modeling -- 5.3.3.1. Monovariable Polynomial Model -- 5.3.3.2. Monovariable Rational Model -- 5.3.4. Continuous-time Global Modeling -- 5.3.4.1. The Parsimonious Models -- 5.3.4.2. Topological Characterization -- 5.3.4.3. Model Validation -- 5.3.4.4. Multivariable Polynomial Modeling -- 5.3.5. State Estimation -- 5.4. Chua's Circuit Control and Synchronization -- 5.4.1. General Considerations { Control Objective, Available Energy and Mathematical Modelling -- 5.4.1.1. The ITVC Principle -- 5.4.2. Linear State Feedback -- 5.4.3. Robust Control and Synchronization via Linear Matrix Inequalities -- 5.4.3.1. Robust H1 Synchronization -- 5.4.3.2. Experimental Results with Information Transmission -- 5.4.4. Nonlinear State Feedback -- 5.4.4.1. Low Energy Adaptive Proportional Controller -- 5.4.4.2. High Energy Sliding Mode Controller -- 5.5. Conclusions -- Acknowledgments -- References.

6. Chaos Control for a PWM H-bridge Inverter B. Robert, M. Feki and H.H.C. Iu -- 6.1. Introduction -- 6.2. H-Bridge Model -- 6.3. Current-programmed Inverter -- 6.4. Time-delayed Feedback Controller -- 6.4.1. Controller Design -- 6.4.2. Stability Analysis -- 6.4.3. Results -- 6.4.4. Optimality Criterion -- 6.5. Extended Time-delayed Feedback Controller -- 6.5.1. Controller Design -- 6.5.2. Stability Analysis -- 6.5.3. Results -- 6.5.4. Optimality Criterion -- 6.6. Results on Sinusoidal Output Tracking -- 6.7. Conclusion -- Acknowledgement -- References -- 7. Chaos Control of Epileptiform Bursting in the Brain M.W. Slutzky, P. Cvitanovic and D.J. Mogul -- 7.1. Introduction -- 7.2. Searching for Evidence of Chaos in the Brain -- 7.2.1. Transforming Brain Signals into State Space -- 7.2.2. Global Measure of Chaos: Lyapunov Exponent Estimates and Short-time Expansion -- 7.2.3. Local Measure of Chaos: Unstable Periodic Orbits -- 7.3. Chaos Control of Epileptiform Bursting -- 7.3.1. Slice Electrophysiology -- 7.3.2. SMP Control -- 7.3.3. Effect of Control Radius (Rc) and Synaptic Plasticity on Control Efficacy -- 7.3.4. Adaptive Control Techniques -- 7.4. Feasibility of Control and Fixed Point Detection by State-point Forcing -- 7.5. Obstacles to Chaos Control -- 7.6. Conclusion -- References -- Section C: Chaos Control for Discrete-time Systems -- 8. Chaos Control for Phase Lock Loop A.M. Harb and B.A. Harb -- 8.1. Introduction -- 8.1.1. The Concept of Phased Lock Loop -- 8.2. Mathematical Model -- 8.3. Equilibrium Solution -- 8.4. Backstepping Recursive Nonlinear Controller -- 8.4. Conclusions -- Appendix 8A-Methodology of Backstepping -- References -- 9. Control of Sigma Delta Modulators via Fuzzy Impulsive Approach B.W.K. Ling, C.Y.F. Ho and J.D. Reiss -- 9.1. Introduction -- 9.2. Notations.

9.3. Conditions for Occurrence of Limit Cycle Behaviors and Local Stability Criterion -- 9.4. Fuzzy Impulsive Control Strategy -- 9.4.1. Fuzzy Impulsive Control Strategy -- 9.4.2. Parameters in the Fuzzy Impulsive Controller -- 9.4.3. Complexity Issue -- 9.4.4. Implementation of the Fuzzy Impulsive Controller -- 9.5. Simulation Results -- 9.6. Conclusion -- References.
Abstract:
In this book, leading researchers present their current work in the challenging area of chaos control in nonlinear circuits and systems, with emphasis on practical methodologies, system design techniques and applications. A combination of overview, tutorial and technical articles, the book describes state-of-the-art research on significant problems in this area. The scope and aim of this book are to bridge the gap between chaos control methods and circuits and systems. It is an ideal starting point for anyone who needs a fundamental understanding of controlling chaos in nonlinear circuits and systems.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: