
Novel Therapeutic Targets for Antiarrhythmic Drugs.
Title:
Novel Therapeutic Targets for Antiarrhythmic Drugs.
Author:
Billman, George Edward.
ISBN:
9780470561409
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (612 pages)
Contents:
NOVEL THERAPEUTIC TARGETS FOR ANTIARRHYTHMIC DRUGS -- CONTENTS -- Acknowledgments -- Contributors -- 1. Introduction -- References -- 2. Myocardial K(+) Channels: Primary Determinants of Action Potential Repolarization -- 2.1 Introduction -- 2.2 Action Potential Waveforms and Repolarizing K(+) Currents -- 2.3 Functional Diversity of Repolarizing Myocardial K(+) Channels -- 2.4 Molecular Diversity of K(+) Channel Subunits -- 2.5 Molecular Determinants of Functional Cardiac I(to) Channels -- 2.6 Molecular Determinants of Functional Cardiac I(K) Channels -- 2.7 Molecular Determinants of Functional Cardiac Kir Channels -- 2.8 Other Potassium Currents Contributing to Action Potential Repolarization -- 2.8.1 Myocardial K(+) Channel Functioning in Macromolecular Protein Complexes -- References -- 3. The "Funny" Pacemaker Current -- 3.1 Introduction: The Mechanism of Cardiac Pacemaking -- 3.2 The "Funny" Current -- 3.2.1 Historical Background -- 3.2.2 Biophysical Properties of the I(f) Current -- 3.2.3 Autonomic Modulation -- 3.2.4 Cardiac Distribution of I(f) -- 3.3 Molecular Determinants of the I(f) Current -- 3.3.1 HCN Clones and Pacemaker Channels -- 3.3.2 Identification of Structural Elements Involved in Channel Gating -- 3.3.3 Regulation of Pacemaker Channel Activity: "Context" Dependence and Protein-Protein Interactions -- 3.3.4 HCN Gene Regulation -- 3.4 Blockers of Funny Channels -- 3.4.1 Alinidine (ST567) -- 3.4.2 Falipamil (AQ-A39), Zatebradine (UL-FS 49), and Cilobradine (DK-AH269) -- 3.4.3 ZD7288 -- 3.4.4 Ivabradine (S16257) -- 3.4.5 Effects of the Heart Rate Reducing Agents on HCN Isoforms -- 3.5 Genetics of HCN Channels -- 3.5.1 HCN-KO Models -- 3.5.2 Pathologies Associated with HCN Dysfunctions -- 3.6 HCN-Based Biological Pacemakers -- References -- 4. Arrhythmia Mechanisms in Ischemia and Infarction -- 4.1 Introduction.
4.1.1 Modes of Ischemia, Phases of Arrhythmogenesis -- 4.1.2 Trigger-Substrate-Modulating Factors -- 4.2 Arrhythmogenesis in Acute Myocardial Ischemia -- 4.2.1 Phase 1A -- 4.2.2 Phase 1B -- 4.2.3 Arrhythmogenic Mechanism: Trigger -- 4.2.4 Catecholamines -- 4.3 Arrhythmogenesis During the First Week Post MI -- 4.3.1 Mechanisms -- 4.3.2 The Subendocardial Purkinje Cell as a Trigger 24-48 H Post Occlusion -- 4.3.3 Five Days Post-Occlusion: Epicardial Border Zone -- 4.4 Arrhythmia Mechanisms in Chronic Infarction -- 4.4.1 Reentry and Focal Mechanisms -- 4.4.2 Heterogeneity of Ion Channel Expression in the Healthy Heart -- 4.4.3 Remodeling in Chronic Myocardial Infarction -- 4.4.4 Structural Remodeling -- 4.4.5 Role of the Purkinje System -- References -- 5. Antiarrhythmic Drug Classification -- 5.1 Introduction -- 5.2 Sodium Channel Blockers -- 5.2.1 Mixed Sodium Channel Blockers (Vaughan Williams Class Ia) -- 5.3 Inhibitors of the Fast Sodium Current with Rapid Kinetics (Vaughan Williams Class Ib) -- 5.3.1 Lidocaine -- 5.3.2 Mexiletine -- 5.4 Inhibitors of the Fast Sodium Current with Slow Kinetics (Vaughan Williams Class Ic) -- 5.4.1 Flecainide -- 5.4.2 Propafenone -- 5.5 Inhibitors of Repolarizing K(+) Currents (Vaughan Williams Class III) -- 5.5.1 Dofetilide -- 5.5.2 Sotalol -- 5.5.3 Amiodarone -- 5.5.4 Ibutilide -- 5.6 I(Kur) Blockers -- 5.7 Inhibitors of Calcium Channels -- 5.7.1 Verapamil and Diltiazem -- 5.8 Inhibitors of Adrenergically-Modulated Electrophysiology -- 5.8.1 Funny Current (I(f)) Inhibitors -- 5.8.2 Beta-Adrenergic Receptor Antagonists -- 5.9 Adenosine -- 5.10 Digoxin -- 5.11 Conclusions -- References -- 6. Repolarization Reserve and Proarrhythmic Risk -- 6.1 Definitions and Background -- 6.2 The Major Players Contributing to Repolarization Reserve -- 6.2.1 Inward Sodium Current (I(Na)).
6.2.2 Inward L-Type Calcium Current (I(Ca,L)) -- 6.2.3 Rapid Delayed Rectifier Outward Potassium Current (I(Kr)) -- 6.2.4 Slow Delayed Rectifier Outward Potassium Current (I(Ks)) -- 6.2.5 Inward Rectifier Potassium Current (I(k1)) -- 6.2.6 Transient Outward Potassium Current (I(to)) -- 6.2.7 Sodium-Potassium Pump Current (I(Na/K)) -- 6.2.8 Sodium-Calcium Exchanger Current (NCX) -- 6.3 Mechanism of Arrhythmia Caused By Decreased Repolarization Reserve -- 6.4 Clinical Significance of the Reduced Repolarization Reserve -- 6.4.1 Genetic Defects -- 6.4.2 Heart Failure -- 6.4.3 Diabetes Mellitus -- 6.4.4 Gender -- 6.4.5 Renal Failure -- 6.4.6 Hypokalemia -- 6.4.7 Hypothyroidism -- 6.4.8 Competitive Athletes -- 6.5 Repolarization Reserve as a Dynamically Changing Factor -- 6.6 How to Measure the Repolarization Reserve -- 6.7 Pharmacological Modulation of the Repolarization Reserve -- 6.8 Conclusion -- References -- 7. Safety Challenges in the Development of Novel Antiarrhythmic Drugs -- 7.1 Introduction -- 7.2 Review of Basic Functional Cardiac Electrophysiology -- 7.2.1 Normal Pacemaker Activity -- 7.2.2 Atrioventricular Conduction -- 7.2.3 Ventricular Repolarization: Effects on the QT Interval -- 7.2.4 Electrophysiologic Lessons Learned from Long QT Syndromes -- 7.3 Safety Pharmacology Perspectives on Developing Antiarrhythmic Drugs -- 7.3.1. Part A. On-Target (Primary Pharmacodynamic) versus Off-Target (Secondary Pharmacodynamic) Considerations -- 7.3.2 Part B. General Considerations -- 7.4 Proarrhythmic Effects of Ventricular Antiarrhythmic Drugs -- 7.4.1 Sodium Channel Block Reduces the Incidence of Ventricular Premature Depolarizations But Increases Mortality -- 7.4.2 Delayed Ventricular Repolarization with d-Sotalol Increases Mortality in Patients with Left Ventricular Dysfunction and Remote Myocardial Infarction: The SWORD and DIAMOND Trials.
7.4.3 Ranolazine: An Antianginal Agent with a Novel Electrophysiologic Action and Potential Antiarrhythmic Properties -- 7.5 Avoiding Proarrhythmia with Atrial Antiarrhythmic Drugs -- 7.5.1 Introduction -- 7.5.2. Lessons Learned with Azimilide, a Class III Drug that Reduces the Delayed Rectifier Currents I(Kr) and I(Ks) -- 7.5.3 Atrial Repolarizing Delaying Agents. Experience with Vernakalant, a Drug that Blocks Multiple Cardiac Currents (Including the Atrial-Specific Repolarizing Current I(Kur)) -- References -- 8. Safety Pharmacology and Regulatory Issues in the Development of Antiarrhythmic Medications -- 8.1 Introduction -- 8.2 Basic Physiological Considerations -- 8.2.1 Ion Channels and Arrhythmogenesis -- 8.2.2 Antiarrhythmic Agents -- 8.3 Historical Considerations -- 8.3.1 CAST: Background, Clinical Findings, and Aftermath -- 8.3.2 Torsades de Pointes and hERG Channel Inhibition: Safety Pharmacology Concern with Critical Impact on Antiarrhythmic Development -- 8.3.3 Recent Clinical Trials -- 8.4 Opportunities for Antiarrhythmic Drug Development in the Present Regulatory Environment -- 8.4.1 ICH-S7A and S7B -- E14 -- 8.4.2 Additional Regulatory Guidance -- 8.4.3 Clinical Management Guidelines and Related Considerations About Patient Populations -- 8.4.4 Consortia Efforts to Address Safety Concerns Related to Antiarrhythmic Drug Development -- 8.4.5 The Unmet Medical Need: Challenges and Opportunities -- References -- 9. Ion Channel Remodeling and Arrhythmias -- 9.1 Introduction -- 9.2 Molecular and Cellular Basis for Cardiac Excitability -- 9.3 Heart Failure-Epidemiology and the Arrhythmia Connection -- 9.4 K(+) Channel Remodeling in Heart Failure -- 9.4.1 Transient Outward Current (I(to)) -- 9.4.2 Inward Rectifier K(+) Current (I(K1)) -- 9.4.3 Delayed Rectifier K Currents (I(Kr) and I(Ks)) -- 9.5 Ca(2+) Handling and Arrhythmia Risk.
9.5.1 L-type Ca(2+) Current I(Ca-L) -- 9.5.2 Sarcoplasmic Recticulum Function -- 9.6 Intracellular [Na(+)] in HF -- 9.6.1 Cardiac I(Na) in HF -- 9.6.2 Na(+)/K(+) ATPase -- 9.7 Gap Junctions and Connexins -- 9.8 Autonomic Signaling -- 9.9 Calmodulin Kinase -- 9.10 Conclusions -- References -- 10. Redox Modification of Ryanodine Receptors in Cardiac Arrhythmia and Failure: A Potential Therapeutic Target -- 10.1 Introduction -- 10.2 Activation and Deactivation of Ryanodine Receptors During Normal Excitation-Contraction Coupling -- 10.3 Defective Ryanodine Receptor Function is Linked to Proarrhythmic Delayed Afterdepolarizations and Calcium Alternans -- 10.4 Genetic and Acquired Defects in Ryanodine Receptors -- 10.5 Effects of Thiol-Modifying Agents on Ryanodine Receptors -- 10.6 Reactive Oxygen Species Production and Oxidative Stress in Cardiac Disease -- 10.7 Redox Modification of Ryanodine Receptors in Cardiac Arrhythmia and Heart Failure -- 10.8 Therapeutic Potential of Normalizing Ryanodine Receptor Function -- References -- 11. Targeting Na(+)/Ca(2+) Exchange as an Antiarrhythmic Strategy -- 11.1 Introduction -- 11.2 Why Target NCX in Arrhythmias? -- 11.3 When Do We See Triggered Arrhythmias? -- 11.4 What Drugs are Available? -- 11.5 Experience with NCX Inhibitors -- 11.6 Caveat-the Consequences on Ca(2+) Handling -- 11.7 Need for More Development -- References -- 12. Calcium/Calmodulin-Dependent Protein Kinase II (CaMKII)-Modulation of Ion Currents and Potential Role for Arrhythmias -- 12.1 Introduction -- 12.2 Evolving Role of Ca(2+)/CaMKII in the Heart -- 12.3 Activation of CaMKII -- 12.4 Role of CaMKII in ECC -- 12.4.1 Ca(2+) Influx and I(Ca) Facilitation -- 12.4.2 SR Ca(2+) Release and SR Ca Leak -- 12.4.3 SR Ca(2+) Uptake, FDAR, Acidosis -- 12.4.4 Na(+) Channels -- 12.4.5 K(+) Channels -- 12.5 Role of CaMKII for Arrhythmias -- 12.6 Summary.
Acknowledgments.
Abstract:
"George Billman has assembled a terrific book that will serve the needs of students, clinical and research faculty with interests in cardiac arrhythmias, antiarrhythmic drugs and ion channel biology." -Mark E. Anderson, M.D., Ph.D. Professor, Departments of Internal Medicine and Molecular Physiology & Biophysics Head, Department of Internal Medicine François M. Abboud Chair in Internal Medicine "The information presented in each individual chapter is of superb quality, still providing the information in such a detailed way that even the knowledge of the specialists in the field will be challenged. The topics covered, however, are so broad that the mentioned specialist will also find chapters of great interest to his common knowledge in other fields. In this era of PubMed, the younger scientists will be pleased to find detailed referencing, including papers going back many decades, revealing information well in the last century. Therefore, I recommend this book to individuals still interested in the mechanism behind arrhythmias and the way that this knowledge can be applied to new therapeutic strategies." -Marc Vos, PhD, University Medical Center Utrecht.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View