Cover image for Coherent States in Quantum Physics.
Coherent States in Quantum Physics.
Title:
Coherent States in Quantum Physics.
Author:
Gazeau, Jean-Pierre.
ISBN:
9783527628292
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (360 pages)
Contents:
Coherent States in Quantum Physics -- Contents -- Preface -- Part One Coherent States -- 1 Introduction -- 1.1 The Motivations -- 2 The Standard Coherent States: the Basics -- 2.1 Schrödinger Definition -- 2.2 Four Representations of Quantum States -- 2.2.1 Position Representation -- 2.2.2 Momentum Representation -- 2.2.3 Number or Fock Representation -- 2.2.4 A Little (Lie) Algebraic Observation -- 2.2.5 Analytical or Fock-Bargmann Representation -- 2.2.6 Operators in Fock-Bargmann Representation -- 2.3 Schrödinger Coherent States -- 2.3.1 Bergman Kernel as a Coherent State -- 2.3.2 A First Fundamental Property -- 2.3.3 Schrödinger Coherent States in the Two Other Representations -- 2.4 Glauber-Klauder-Sudarshan or Standard Coherent States -- 2.5 Why the Adjective Coherent? -- 3 The Standard Coherent States: the (Elementary) Mathematics -- 3.1 Introduction -- 3.2 Properties in the Hilbertian Framework -- 3.2.1 A ``Continuity'' from the Classical Complex Plane to Quantum States -- 3.2.2 ``Coherent'' Resolution of the Unity -- 3.2.3 The Interplay Between the Circle (as a Set of Parameters) and the Plane (as a Euclidean Space) -- 3.2.4 Analytical Bridge -- 3.2.5 Overcompleteness and Reproducing Properties -- 3.3 Coherent States in the Quantum Mechanical Context -- 3.3.1 Symbols -- 3.3.2 Lower Symbols -- 3.3.3 Heisenberg Inequalities -- 3.3.4 Time Evolution and Phase Space -- 3.4 Properties in the Group-Theoretical Context -- 3.4.1 The Vacuum as a Transported Probe… -- 3.4.2 Under the Action of… -- 3.4.3 … the D-Function -- 3.4.4 Symplectic Phase and the Weyl-Heisenberg Group -- 3.4.5 Coherent States as Tools in Signal Analysis -- 3.5 Quantum Distributions and Coherent States -- 3.5.1 The Density Matrix and the Representation ``R'' -- 3.5.2 The Density Matrix and the Representation ``Q'' -- 3.5.3 The Density Matrix and the Representation ``P''.

3.5.4 The Density Matrix and the Wigner(-Weyl-Ville) Distribution -- 3.6 The Feynman Path Integral and Coherent States -- 4 Coherent States in Quantum Information: an Example of Experimental Manipulation -- 4.1 Quantum States for Information -- 4.2 Optical Coherent States in Quantum Information -- 4.3 Binary Coherent State Communication -- 4.3.1 Binary Logic with Two Coherent States -- 4.3.2 Uncertainties on POVMs -- 4.3.3 The Quantum Error Probability or Helstrom Bound -- 4.3.4 The Helstrom Bound in Binary Communication -- 4.3.5 Helstrom Bound for Coherent States -- 4.3.6 Helstrom Bound with Imperfect Detection -- 4.4 The Kennedy Receiver -- 4.4.1 The Principle -- 4.4.2 Kennedy Receiver Error -- 4.5 The Sasaki-Hirota Receiver -- 4.5.1 The Principle -- 4.5.2 Sasaki-Hirota Receiver Error -- 4.6 The Dolinar Receiver -- 4.6.1 The Principle -- 4.6.2 Photon Counting Distributions -- 4.6.3 Decision Criterion of the Dolinar Receiver -- 4.6.4 Optimal Control -- 4.6.5 Dolinar Hypothesis Testing Procedure -- 4.7 The Cook-Martin-Geremia Closed-Loop Experiment -- 4.7.1 A Theoretical Preliminary -- 4.7.2 Closed-Loop Experiment: the Apparatus -- 4.7.3 Closed-Loop Experiment: the Results -- 4.8 Conclusion -- 5 Coherent States: a General Construction -- 5.1 Introduction -- 5.2 A Bayesian Probabilistic Duality in Standard Coherent States -- 5.2.1 Poisson and Gamma Distributions -- 5.2.2 Bayesian Duality -- 5.2.3 The Fock-Bargmann Option -- 5.2.4 A Scheme of Construction -- 5.3 General Setting: ``Quantum'' Processing of a Measure Space -- 5.4 Coherent States for the Motion of a Particle on the Circle -- 5.5 More Coherent States for the Motion of a Particle on the Circle -- 6 The Spin Coherent States -- 6.1 Introduction -- 6.2 Preliminary Material -- 6.3 The Construction of Spin Coherent States -- 6.4 The Binomial Probabilistic Content of Spin Coherent States.

6.5 Spin Coherent States: Group-Theoretical Context -- 6.6 Spin Coherent States: Fock-Bargmann Aspects -- 6.7 Spin Coherent States: Spherical Harmonics Aspects -- 6.8 Other Spin Coherent States from Spin Spherical Harmonics -- 6.8.1 Matrix Elements of the SU(2) Unitary Irreducible Representations -- 6.8.2 Orthogonality Relations -- 6.8.3 Spin Spherical Harmonics -- 6.8.4 Spin Spherical Harmonics as an Orthonormal Basis -- 6.8.5 The Important Case: =j -- 6.8.6 Transformation Laws -- 6.8.7 Infinitesimal Transformation Laws -- 6.8.8 ``Sigma-Spin'' Coherent States -- 6.8.9 Covariance Properties of Sigma-Spin Coherent States -- 7 Selected Pieces of Applications of Standard and Spin Coherent States -- 7.1 Introduction -- 7.2 Coherent States and the Driven Oscillator -- 7.3 An Application of Standard or Spin Coherent States in Statistical Physics: Superradiance -- 7.3.1 The Dicke Model -- 7.3.2 The Partition Function -- 7.3.3 The Critical Temperature -- 7.3.4 Average Number of Photons per Atom -- 7.3.5 Comments -- 7.4 Application of Spin Coherent States to Quantum Magnetism -- 7.5 Application of Spin Coherent States to Classical and Thermodynamical Limits -- 7.5.1 Symbols and Traces -- 7.5.2 Berezin-Lieb Inequalities for the Partition Function -- 7.5.3 Application to the Heisenberg Model -- 8 SU(1,1) or SL(2,R) Coherent States -- 8.1 Introduction -- 8.2 The Unit Disk as an Observation Set -- 8.3 Coherent States -- 8.4 Probabilistic Interpretation -- 8.5 Poincaré Half-Plane for Time-Scale Analysis -- 8.6 Symmetries of the Disk and the Half-Plane -- 8.7 Group-Theoretical Content of the Coherent States -- 8.7.1 Cartan Factorization -- 8.7.2 Discrete Series of SU(1,1) -- 8.7.3 Lie Algebra Aspects -- 8.7.4 Coherent States as a Transported Vacuum -- 8.8 A Few Words on Continuous Wavelet Analysis -- 9 Another Family of SU(1,1) Coherent States for Quantum Systems.

9.1 Introduction -- 9.2 Classical Motion in the Infinite-Well and Pöschl-Teller Potentials -- 9.2.1 Motion in the Infinite Well -- 9.2.2 Pöschl-Teller Potentials -- 9.3 Quantum Motion in the Infinite-Well and Pöschl-Teller Potentials -- 9.3.1 In the Infinite Well -- 9.3.2 In Pöschl-Teller Potentials -- 9.4 The Dynamical Algebra su(1,1) -- 9.5 Sequences of Numbers and Coherent States on the Complex Plane -- 9.6 Coherent States for Infinite-Well and Pöschl-Teller Potentials -- 9.6.1 For the Infinite Well -- 9.6.2 For the Pöschl-Teller Potentials -- 9.7 Physical Aspects of the Coherent States -- 9.7.1 Quantum Revivals -- 9.7.2 Mandel Statistical Characterization -- 9.7.3 Temporal Evolution of Symbols -- 9.7.4 Discussion -- 10 Squeezed States and Their SU(1,1) Content -- 10.1 Introduction -- 10.2 Squeezed States in Quantum Optics -- 10.2.1 The Construction within a Physical Context -- 10.2.2 Algebraic (su(1,1)) Content of Squeezed States -- 10.2.3 Using Squeezed States in Molecular Dynamics -- 11 Fermionic Coherent States -- 11.1 Introduction -- 11.2 Coherent States for One Fermionic Mode -- 11.3 Coherent States for Systems of Identical Fermions -- 11.3.1 Fermionic Symmetry SU(r) -- 11.3.2 Fermionic Symmetry SO(2r) -- 11.3.3 Fermionic Symmetry SO(2r+1) -- 11.3.4 Graphic Summary -- 11.4 Application to the Hartree-Fock-Bogoliubov Theory -- Part Two Coherent State Quantization -- 12 Standard Coherent State Quantization: the Klauder-Berezin Approach -- 12.1 Introduction -- 12.2 The Berezin-Klauder Quantization of the Motion of a Particle on the Line -- 12.3 Canonical Quantization Rules -- 12.3.1 Van Hove Canonical Quantization Rules [161] -- 12.4 More Upper and Lower Symbols: the Angle Operator -- 12.5 Quantization of Distributions: Dirac and Others -- 12.6 Finite-Dimensional Canonical Case -- 13 Coherent State or Frame Quantization -- 13.1 Introduction.

13.2 Some Ideas on Quantization -- 13.3 One more Coherent State Construction -- 13.4 Coherent State Quantization -- 13.5 A Quantization of the Circle by 22 Real Matrices -- 13.5.1 Quantization and Symbol Calculus -- 13.5.2 Probabilistic Aspects -- 13.6 Quantization with k-Fermionic Coherent States -- 13.7 Final Comments -- 14 Coherent State Quantization of Finite Set, Unit Interval, and Circle -- 14.1 Introduction -- 14.2 Coherent State Quantization of a Finite Set with Complex 22 Matrices -- 14.3 Coherent State Quantization of the Unit Interval -- 14.3.1 Quantization with Finite Subfamilies of Haar Wavelets -- 14.3.2 A Two-Dimensional Noncommutative Quantization of the Unit Interval -- 14.4 Coherent State Quantization of the Unit Circle and the Quantum Phase Operator -- 14.4.1 A Retrospective of Various Approaches -- 14.4.2 Pegg-Barnett Phase Operator and Coherent State Quantization -- 14.4.3 A Phase Operator from Two Finite-Dimensional Vector Spaces -- 14.4.4 A Phase Operator from the Interplay Between Finite and Infinite Dimensions -- 15 Coherent State Quantization of Motions on the Circle, in an Interval, and Others -- 15.1 Introduction -- 15.2 Motion on the Circle -- 15.2.1 The Cylinder as an Observation Set -- 15.2.2 Quantization of Classical Observables -- 15.2.3 Did You Say Canonical? -- 15.3 From the Motion of the Circle to the Motion on 1+1 de Sitter Space-Time -- 15.4 Coherent State Quantization of the Motion in an Infinite-Well Potential -- 15.4.1 Introduction -- 15.4.2 The Standard Quantum Context -- 15.4.3 Two-Component Coherent States -- 15.4.4 Quantization of Classical Observables -- 15.4.5 Quantum Behavior through Lower Symbols -- 15.4.6 Discussion -- 15.5 Motion on a Discrete Set of Points -- 16 Quantizations of the Motion on the Torus -- 16.1 Introduction -- 16.2 The Torus as a Phase Space -- 16.3 Quantum States on the Torus.

16.4 Coherent States for the Torus.
Abstract:
Jean-Pierre Gazeau is professor of Physics at the University Diderot Paris 7, France, and a member of the "Astroparticles and Cosmology" Laboratory (CNRS, UMR 7164). Having obtained his academic degrees from Sorbonne University and Pierre-and-Marie Curie University (Paris 6), he spent most of his academic career in Paris and, as invited professor and researcher, in many other places, among them UCLA, Louvain, Montreal, Prague, Newcastle, Rio de Janeiro and Sao Paulo. Professor Gazeau has authored more than 150 scientific publications in Theoretical and Mathematical Physics, mostly devoted to group theoretical methods in physics, coherent states, quantization methods, and number theory for aperiodic systems.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: