
Biostatistical Design and Analysis Using R : A Practical Guide.
Title:
Biostatistical Design and Analysis Using R : A Practical Guide.
Author:
Logan, Murray.
ISBN:
9781444319637
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (576 pages)
Contents:
Biostatistical Design and Analysis Using R -- Contents -- Preface -- R quick reference card -- General key to statistical methods -- 1 Introduction to R -- 1.1 Why R? -- 1.2 Installing R -- 1.2.1 Windows -- 1.2.2 Unix/Linux -- 1.2.3 MacOSX -- 1.3 The R environment -- 1.3.1 The console (command line) -- 1.4 Object names -- 1.5 Expressions, Assignment and Arithmetic -- 1.6 R Sessions and workspaces -- 1.6.1 Cleaning up -- 1.6.2 Workspaces -- 1.6.3 Current working directory -- 1.6.4 Quitting R -- 1.7 Getting help -- 1.8 Functions -- 1.9 Precedence -- 1.10 Vectors - variables -- 1.10.1 Regular or patterned sequences -- 1.10.2 Character vectors -- 1.10.3 Factors -- 1.11 Matrices, lists and data frames -- 1.11.1 Matrices -- 1.11.2 Lists -- 1.11.3 Data frames - data sets -- 1.12 Object information and conversion -- 1.12.1 Object information -- 1.12.2 Object conversion -- 1.13 Indexing vectors, matrices and lists -- 1.13.1 Vector indexing -- 1.13.2 Matrix indexing -- 1.13.3 List indexing -- 1.14 Pattern matching and replacement (character search and replace) -- 1.14.1 grep - pattern searching -- 1.14.2 regexpr - position and length of match -- 1.14.3 gsub - pattern replacement -- 1.15 Data manipulation -- 1.15.1 Sorting -- 1.15.2 Formatting data -- 1.16 Functions that perform other functions repeatedly -- 1.16.1 Along matrix margins -- 1.16.2 By factorial groups -- 1.16.3 By objects -- 1.17 Programming in R -- 1.17.1 Grouped expressions -- 1.17.2 Conditional execution - if and ifelse -- 1.17.3 Repeated execution - looping -- 1.17.4 Writing functions -- 1.18 An introduction to the R graphical environment -- 1.18.1 The plot() function -- 1.18.2 Graphical devices -- 1.18.3 Multiple graphics devices -- 1.19 Packages -- 1.19.1 Manual package management -- 1.19.2 Loading packages -- 1.20 Working with scripts -- 1.21 Citing R in publications.
1.22 Further reading -- 2 Datasets -- 2.1 Constructing data frames -- 2.2 Reviewing a data frame - fix() -- 2.3 Importing (reading) data -- 2.3.1 Import from text file -- 2.3.2 Importing from the clipboard -- 2.3.3 Import from other software -- 2.4 Exporting (writing) data -- 2.5 Saving and loading of R objects -- 2.6 Data frame vectors -- 2.6.1 Factor levels -- 2.7 Manipulating data sets -- 2.7.1 Subsets of data frames - data frame indexing -- 2.7.2 The %in% matching operator -- 2.7.3 Pivot tables and aggregating datasets -- 2.7.4 Sorting datasets -- 2.7.5 Accessing and evaluating expressions within the context a dataframe -- 2.7.6 Reshaping dataframes -- 2.8 Dummy data sets - generating random data -- 3 Introductory statistical principles -- 3.1 Distributions -- 3.1.1 The normal distribution -- 3.1.2 Log-normal distribution -- 3.2 Scale transformations -- 3.3 Measures of location -- 3.4 Measures of dispersion and variability -- 3.5 Measures of the precision of estimates - standard errors and confidence intervals -- 3.6 Degrees of freedom -- 3.7 Methods of estimation -- 3.7.1 Least squares (LS) -- 3.7.2 Maximum likelihood (ML) -- 3.8 Outliers -- 3.9 Further reading -- 4 Sampling and experimental design with R -- 4.1 Random sampling -- 4.2 Experimental design -- 4.2.1 Fully randomized treatment allocation -- 4.2.2 Randomized complete block treatment allocation -- 5 Graphical data presentation -- 5.1 The plot() function -- 5.1.1 The type parameter -- 5.1.2 The xlim and ylim parameters -- 5.1.3 The xlab and ylab parameters -- 5.1.4 The axes and ann parameters -- 5.1.5 The log parameter -- 5.2 Graphical Parameters -- 5.2.1 Plot dimensional and layout parameters -- 5.2.2 Axis characteristics -- 5.2.3 Character sizes -- 5.2.4 Line characteristics -- 5.2.5 Plotting character parameter - pch -- 5.2.6 Fonts -- 5.2.7 Text orientation and justification.
5.2.8 Colors -- 5.3 Enhancing and customizing plots with low-level plotting functions -- 5.3.1 Adding points - points() -- 5.3.2 Adding text within a plot - text() -- 5.3.3 Adding text to plot margins - mtext() -- 5.3.4 Adding a legend - legend() -- 5.3.5 More advanced text formatting -- 5.3.6 Adding axes - axis() -- 5.3.7 Adding lines and shapes within a plot -- 5.4 Interactive graphics -- 5.4.1 Identifying points - identify() -- 5.4.2 Retrieving coordinates - locator() -- 5.5 Exporting graphics -- 5.5.1 Postscript - poscript() and pdf() -- 5.5.2 Bitmaps - jpeg() and png() -- 5.5.3 Copying devices - dev.copy() -- 5.6 Working with multiple graphical devices -- 5.7 High-level plotting functions for univariate (single variable) data -- 5.7.1 Histogram -- 5.7.2 Density functions -- 5.7.3 Q-Q plots -- 5.7.4 Boxplots -- 5.7.5 Rug charts -- 5.8 Presenting relationships -- 5.8.1 Scatterplots -- 5.9 Presenting grouped data -- 5.9.1 Boxplots -- 5.9.2 Boxplots for grouped means -- 5.9.3 Interaction plots - means plots -- 5.9.4 Bargraphs -- 5.9.5 Violin plots -- 5.10 Presenting categorical data -- 5.10.1 Mosaic plots -- 5.10.2 Association plots -- 5.11 Trellis graphics -- 5.11.1 scales() parameters -- 5.12 Further reading -- 6 Simple hypothesis testing - one and two population tests -- 6.1 Hypothesis testing -- 6.2 One- and two-tailed tests -- 6.3 t-tests -- 6.4 Assumptions -- 6.5 Statistical decision and power -- 6.6 Robust tests -- 6.7 Further reading -- 6.8 Key for simple hypothesis testing -- 6.9 Worked examples of real biological data sets -- 7 Introduction to Linear models -- 7.1 Linear models -- 7.2 Linear models in R -- 7.3 Estimating linear model parameters -- 7.3.1 Linear models with factorial variables -- 7.3.2 Linear model hypothesis testing -- 7.4 Comments about the importance of understanding the structure and parameterization of linear models.
8 Correlation and simple linear regression -- 8.1 Correlation -- 8.1.1 Product moment correlation coefficient -- 8.1.2 Null hypothesis -- 8.1.3 Assumptions -- 8.1.4 Robust correlation -- 8.1.5 Confidence ellipses -- 8.2 Simple linear regression -- 8.2.1 Linear model -- 8.2.2 Null hypotheses -- 8.2.3 Assumptions -- 8.2.4 Multiple responses for each level of the predictor -- 8.2.5 Model I and II regression -- 8.2.6 Regression diagnostics -- 8.2.7 Robust regression -- 8.2.8 Power and sample size determination -- 8.3 Smoothers and local regression -- 8.4 Correlation and regression in R -- 8.5 Further reading -- 8.6 Key for correlation and regression -- 8.7 Worked examples of real biological data sets -- 9 Multiple and curvilinear regression -- 9.1 Multiple linear regression -- 9.2 Linear models -- 9.3 Null hypotheses -- 9.4 Assumptions -- 9.5 Curvilinear models -- 9.5.1 Polynomial regression -- 9.5.2 Nonlinear regression -- 9.5.3 Diagnostics -- 9.6 Robust regression -- 9.7 Model selection -- 9.7.1 Model averaging -- 9.7.2 Hierarchical partitioning -- 9.8 Regression trees -- 9.9 Further reading -- 9.10 Key and analysis sequence for multiple and complex regression -- 9.11 Worked examples of real biological data sets -- 10 Single factor classification (ANOVA) -- 10.0.1 Fixed versus random factors -- 10.1 Null hypotheses -- 10.2 Linear model -- 10.3 Analysis of variance -- 10.4 Assumptions -- 10.5 Robust classification (ANOVA) -- 10.6 Tests of trends and means comparisons -- 10.7 Power and sample size determination -- 10.8 ANOVA in R -- 10.9 Further reading -- 10.10 Key for single factor classification (ANOVA) -- 10.11 Worked examples of real biological data sets -- 11 Nested ANOVA -- 11.1 Linear models -- 11.2 Null hypotheses -- 11.2.1 Factor A - the main treatment effect -- 11.2.2 Factor B - the nested factor -- 11.3 Analysis of variance.
11.4 Variance components -- 11.5 Assumptions -- 11.6 Pooling denominator terms -- 11.7 Unbalanced nested designs -- 11.8 Linear mixed effects models -- 11.9 Robust alternatives -- 11.10 Power and optimisation of resource allocation -- 11.11 Nested ANOVA in R -- 11.11.1 Error strata (aov) -- 11.11.2 Linear mixed effects models (lme and lmer) -- 11.12 Further reading -- 11.13 Key for nested ANOVA -- 11.14 Worked examples of real biological data sets -- 12 Factorial ANOVA -- 12.1 Linear models -- 12.2 Null hypotheses -- 12.2.1 Model 1 - fixed effects -- 12.2.2 Model 2 - random effects -- 12.2.3 Model 3 - mixed effects -- 12.3 Analysis of variance -- 12.3.1 Quasi F-ratios -- 12.3.2 Interactions and main effects tests -- 12.4 Assumptions -- 12.5 Planned and unplanned comparisons -- 12.6 Unbalanced designs -- 12.6.1 Missing observations -- 12.6.2 Missing combinations - missing cells -- 12.7 Robust factorial ANOVA -- 12.8 Power and sample sizes -- 12.9 Factorial ANOVA in R -- 12.10 Further reading -- 12.11 Key for factorial ANOVA -- 12.12 Worked examples of real biological data sets -- 13 Unreplicated factorial designs - randomized block and simple repeated measures -- 13.1 Linear models -- 13.2 Null hypotheses -- 13.2.1 Factor A - the main within block treatment effect -- 13.2.2 Factor B - the blocking factor -- 13.3 Analysis of variance -- 13.4 Assumptions -- 13.4.1 Sphericity -- 13.4.2 Block by treatment interactions -- 13.5 Specific comparisons -- 13.6 Unbalanced un-replicated factorial designs -- 13.7 Robust alternatives -- 13.8 Power and blocking efficiency -- 13.9 Unreplicated factorial ANOVA in R -- 13.10 Further reading -- 13.11 Key for randomized block and simple repeated measures ANOVA -- 13.12 Worked examples of real biological data sets -- 14 Partly nested designs: split plot and complex repeated measures -- 14.1 Null hypotheses.
14.1.1 Factor A - the main between block treatment effect.
Abstract:
R - the statistical and graphical environment is rapidly emerging as an important set of teaching and research tools for biologists. This book draws upon the popularity and free availability of R to couple the theory and practice of biostatistics into a single treatment, so as to provide a textbook for biologists learning statistics, R, or both. An abridged description of biostatistical principles and analysis sequence keys are combined together with worked examples of the practical use of R into a complete practical guide to designing and analyzing real biological research. Topics covered include: simple hypothesis testing, graphing exploratory data analysis and graphical summaries regression (linear, multi and non-linear) simple and complex ANOVA and ANCOVA designs (including nested, factorial, blocking, spit-plot and repeated measures) frequency analysis and generalized linear models. Linear mixed effects modeling is also incorporated extensively throughout as an alternative to traditional modeling techniques. The book is accompanied by a companion website www.wiley.com/go/logan/r with an extensive set of resources comprising all R scripts and data sets used in the book, additional worked examples, the biology package, and other instructional materials and links.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Added Author:
Electronic Access:
Click to View