
Chemistry of Nanocarbons.
Title:
Chemistry of Nanocarbons.
Author:
Akasaka, Takeshi.
ISBN:
9780470660195
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (538 pages)
Contents:
Chemistry of Nanocarbons -- Contents -- Preface -- Acknowledgements -- Contributors -- Abbreviations -- 1 Noncovalent Functionalization of Carbon Nanotubes -- 1.1 Introduction -- 1.2 Overview of Functionalization Methods -- 1.3 The Noncovalent Approach -- 1.3.1 Dispersability of Carbon Nanotubes -- 1.3.2 The Role of Noncovalent Functionalization in Nanotube Separation -- 1.4 Conclusion -- References -- 2 Supramolecular Assembly of Fullerenes and Carbon Nanotubes Hybrids -- 2.1 Introduction -- 2.2 Hydrogen Bonded C60 Donor Ensembles -- 2.3 Concave exTTF Derivatives as Recognizing Motifs for Fullerene -- 2.4 Noncovalent Functionalization of Carbon Nanotubes -- 2.5 Summary and Outlook -- Acknowledgements -- References -- 3 Properties of Fullerene-Containing Dendrimers -- 3.1 Introduction -- 3.2 Dendrimers with a Fullerene Core -- 3.2.1 A Fullerene Core to Probe Dendritic Shielding Effects -- 3.2.2 Light Harvesting Dendrimers with a Fullerene Core -- 3.3 Fullerene-Rich Dendrimers -- 3.4 Conclusions -- Acknowledgements -- References -- 4 Novel Electron Donor Acceptor Nanocomposites -- 4.1 Introduction -- 4.2 Electron Donor-Fullerene Composites -- 4.2.1 General -- 4.2.2 Donor-Fullerene Dyads for Photoinduced Electron Transfer -- 4.2.3 Donor-Fullerene Linked Multicomponent Systems -- 4.2.4 Supramolecular Donor-Fullerene Systems -- 4.2.5 Photoelectrochemical Devices and Solar Cells -- 4.3 Carbon Nanotubes -- 4.3.1 General -- 4.3.2 Carbon Nanotube - Electron Donor Acceptor Conjugates -- 4.3.3 Carbon Nanotube - Electron Donor Acceptor Hybrids -- 4.4 Other Nanocarbon Composites -- References -- 5 Higher Fullerenes: Chirality and Covalent Adducts -- 5.1 Introduction -- 5.1.1 Fullerene Chirality - Classification and the Stereodescriptor System -- 5.1.2 Reactivity and Regioselectivity -- 5.2 The Chemistry of C70.
5.2.1 C70-Derivatives with an Inherently Chiral Functionalization Pattern -- 5.2.2 C70-Derivatives with a Non-Inherently Chiral Functionalization Pattern -- 5.2.3 Fullerene Derivatives with Stereogenic Centers in the Addends -- 5.3 The Higher Fullerenes Beyond C70 -- 5.3.1 Isolated and Structurally Assigned Higher Fullerenes -- 5.3.2 Inherently Chiral Fullerenes - Chiral Scaffolds -- 5.4 Concluding Remarks -- Acknowledgement -- References -- 6 Application of Fullerenes to Nanodevices -- 6.1 Introduction -- 6.2 Synthesis of Transition Metal Fullerene Complexes -- 6.3 Organometallic Chemistry of Metal Fullerene Complexes -- 6.4 Synthesis of Multimetal Fullerene Complexes -- 6.5 Supramolecular Structures of Penta(organo)[60]fullerene Derivatives -- 6.6 Reduction of Penta(organo)[60]fullerenes to Generate Polyanions -- 6.7 Photoinduced Charge Separation -- 6.8 Photocurrent-Generating Organic and Organometallic Fullerene Derivatives -- 6.8.1 Attaching Legs to Fullerene Metal Complexes -- 6.8.2 Formation of Self-Assembled Monomolecular Films -- 6.8.3 Photoelectric Current Generation Function of Lunar Lander-Type Molecules -- 6.9 Conclusion -- References -- 7 Supramolecular Chemistry of Fullerenes: Host Molecules for Fullerenes on the Basis of π-π Interaction -- 7.1 Introduction -- 7.2 Fullerenes as a Electron Acceptor -- 7.3 Host Molecules Composed of Aromatic π-systems -- 7.3.1 Hydrocarbon Hosts -- 7.3.2 Hosts Composed of Electron Rich Aromatic π-Systems -- 7.3.3 Host Molecules Bearing Appendants -- 7.3.4 Host Molecules with Dimeric or Polymeric Structures -- 7.4 Complexes with Host Molecules Based on Porphyrin π Systems -- 7.4.1 Hosts with a Porphyrin π System -- 7.4.2 Hosts with Two Porphyrin π Systems -- 7.5 Complexes with Host Molecules Bearing a Cavity Consisting of Curved π System -- 7.5.1 Host with a Concave Structure.
7.5.2 Complexes with Host Molecules Bearing a Cylindrical Cavity -- 7.6 The Nature of Supramolecular Property of Fullerenes -- References -- 8 Molecular Surgery toward Organic Synthesis of Endohedral Fullerenes -- 8.1 Introduction -- 8.2 Molecular-Surgery Synthesis of Endohedral C60 Encapsulating Molecular Hydrogen -- 8.2.1 Cage Opening -- 8.2.2 Encapsulation of a H2 Molecule -- 8.2.3 Encapsulation of a He Atom -- 8.2.4 Closure of the Opening -- 8.3 Chemical Functionalization of H2@C60 -- 8.4 Utilization of the Encapsulated H2 as an NMR Probe -- 8.5 Physical Properties of an Encapsulated H2 in C60 -- 8.6 Molecular-Surgery Synthesis of Endohedral C70 Encapsulating Molecular Hydrogen -- 8.6.1 Synthesis of (H2)2@C70 and H2@C70 -- 8.6.2 Diels-Alder Reaction of (H2)2@C70 and H2@C70 -- 8.7 Outlook -- References -- 9 New Endohedral Metallofullerenes: Trimetallic Nitride Endohedral Fullerenes -- 9.1 Discovery, Preparation, and Purification -- 9.2 Structural Studies -- 9.2.1 Cycloaddition Reactions -- 9.2.2 Free Radical and Nucleophilic Addition Reactions -- 9.2.3 Electrochemistry Studies of TNT-EMFs -- 9.3 Summary and Conclusions -- References -- 10 Recent Progress in Chemistry of Endohedral Metallofullerenes -- 10.1 Introduction -- 10.2 Chemical Derivatization of Mono-Metallofullerenes -- 10.2.1 Carbene Reaction -- 10.2.2 Nucleophilic Reaction -- 10.3 Chemical Derivatization of Di-Metallofullerenes -- 10.3.1 Bis-silylation -- 10.3.2 Cycloaddition with Oxazolidinone -- 10.3.3 Carbene Reaction -- 10.4 Chemical Derivatization of Trimetallic Nitride Template Fullerene -- 10.5 Chemical Derivatization of Metallic Carbaide Fullerene -- 10.6 Missing Metallofullerene -- 10.7 Supramolecular Chemistry -- 10.7.1 Supramolecular System with Macrocycles -- 10.7.2 Supramolecular System with Organic Donor -- 10.8 Conclusion -- References.
11 Gadonanostructures as Magnetic Resonance Imaging Contrast Agents -- 11.1 Magnetic Resonance Imaging (MRI) and the Role of Contrast Agents (CAs) -- 11.2 The Advantages of Gadonanostructures as MRI Contrast Agent Synthons -- 11.3 Gadofullerenes as MRI Contrast Agents -- 11.4 Understanding the Relaxation Mechanism of Gadofullerenes -- 11.5 Gadonanotubes as MRI Contrast Agents -- Acknowledgement -- References -- 12 Chemistry of Soluble Carbon Nanotubes: Fundamentals and Applications -- 12.1 Introduction -- 12.2 Characterizations of Dispersion States -- 12.3 CNT Solubilization by Small Molecules -- 12.3.1 Surfactants -- 12.3.2 Aromatic Compounds -- 12.4 Solubilization by Polymers -- 12.4.1 Vinyl Polymers -- 12.4.2 Conducting Polymers -- 12.4.3 Condensation Polymers -- 12.4.4 Block Copolymers -- 12.5 Nanotube/Polymer Hybrids and Composites -- 12.5.1 DNA/Nanotube Hybrids -- 12.5.2 Curable Monomers and Nanoimprinting -- 12.5.3 Nanotube/Polymer Gel-Near IR Responsive Materials -- 12.5.4 Conductive Nanotube Honeycomb Film -- 12.6 Summary -- References -- 13 Functionalization of Carbon Nanotubes for Nanoelectronic and Photovoltaic Applications -- 13.1 Introduction -- 13.2 Functionalization of Carbon Nanotubes -- 13.3 Properties and Applications -- 13.3.1 Electron Transfer Properties and Photovoltaic Applications -- 13.3.2 Functionalized Carbon Nanotubes for Electrical Measurements and Field Effect Transistors -- 13.3.3 Biosensors -- 13.4 Conclusion -- References -- 14 Dispersion and Separation of Single-walled Carbon Nanotubes -- 14.1 Introduction -- 14.2 Dispersion of SWNTs -- 14.2.1 Dispersion of SWNTs Using Amine -- 14.2.2 Dispersion of SWNTs Using C60 Derivatives -- 14.2.3 Dispersion of SWNTs in Organic Solvents -- 14.3 Purification and Separation of SWNTs Using Amine -- 14.3.1 Purification and Separation of SWNTs Prepared by CVD Methods.
14.3.2 Purification and Separation of Metallic SWNTs Prepared by Arc-Discharged Method -- 14.3.3 Preparation of SWNTs and Metallic SWNTs Films -- 14.4 Conclusion -- References -- 15 Molecular Encapsulations into Interior Spaces of Carbon Nanotubes and Nanohorns -- 15.1 Introduction -- 15.2 SWCNT Nanopeapods -- 15.2.1 Synthesis Methods -- 15.2.2 Electronic Structures of C60 Nanopeapods -- 15.3 Material Incorporation and Release in/from SWNH -- 15.3.1 Structure of SWNH and SWNHox -- 15.3.2 Liquid Phase Incorporation at Room Temperature -- 15.3.3 Adsorption Sites of SWNHox -- 15.3.4 Release of Materials from inside SWNHox -- 15.3.5 Plug -- 15.4 Summary -- References -- 16 Carbon Nanotube for Imaging of Single Molecules in Motion -- 16.1 Introduction -- 16.2 Electron Microscopic Observation of Small Molecules -- 16.3 TEM Imaging of Alkyl Carborane Molecules -- 16.4 Alkyl Chain Passing through a Hole -- 16.5 3D Structural Information on Pyrene Amide Molecule -- 16.6 Complex Molecule 4 Fixed outside of Nanotube -- 16.7 Conclusion -- Acknowledgements -- References -- 17 Chemistry of Single-Nano Diamond Particles -- 17.1 Introduction -- 17.2 Geometrical Structure -- 17.3 Electronic Structure -- 17.4 Properties -- 17.4.1 Tight Hydration -- 17.4.2 Gels -- 17.4.3 Number Effect -- 17.5 Applications -- 17.5.1 Lubrication Water -- 17.6 Recollection and Perspectives -- Acknowledgements -- References -- 18 Properties of π-electrons in Graphene Nanoribbons and Nanographenes -- 18.1 Introduction -- 18.2 Edge Effects in Graphene Nanoribbons and Nanographenes -- 18.3 Electronic and Magnetic Properties of Graphene Nanoribbons and Nanographenes -- 18.3.1 Graphene Nanoribbons -- 18.3.2 Nanographenes -- 18.4 Outlook -- Acknowledgement -- References -- 19 Carbon Nano Onions -- 19.1 Introduction -- 19.2 Physical Properties of Carbon Nano Onions Obtained from Annealing.
19.2.1 Annealing Process.
Abstract:
During the last decade, fullerenes and carbon nanotubes have attracted special interest as new nanocarbons with novel properties. Because of their hollow caged structure, they can be used as containers for atoms and molecules, and nanotubes can be used as miniature test-tubes. Chemistry of Nanocarbons presents the most up-to-date research on chemical aspects of nanometer-sized forms of carbon, with emphasis on fullerenes, nanotubes and nanohorns. All modern chemical aspects are mentioned, including noncovalent interactions, supramolecular assembly, dendrimers, nanocomposites, chirality, nanodevices, host-guest interactions, endohedral fullerenes, magnetic resonance imaging, nanodiamond particles and graphene. The book covers experimental and theoretical aspects of nanocarbons, as well as their uses and potential applications, ranging from molecular electronics to biology and medicine.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View