Cover image for High Energy Radiation from Black Holes : Gamma Rays, Cosmic Rays, and Neutrinos.
High Energy Radiation from Black Holes : Gamma Rays, Cosmic Rays, and Neutrinos.
Title:
High Energy Radiation from Black Holes : Gamma Rays, Cosmic Rays, and Neutrinos.
Author:
Dermer, Charles D.
ISBN:
9781400831494
Personal Author:
Physical Description:
1 online resource (561 pages)
Series:
Princeton Series in Astrophysics
Contents:
Cover -- Title -- Copyright -- Contents -- Preface -- Chapter 1. Introduction -- 1.1 Black Holes in Nature -- 1.2 Energy Fluxes -- 1.3 Timing Studies and Black-Hole Mass Estimates -- 1.4 Flux Distribution -- 1.5 The Nighttime Sky -- Chapter 2. Relativistic Kinematics -- 2.1 Lorentz Transformation Equations -- 2.2 Four-Vectors and Momentum -- 2.3 Relativistic Doppler Factor -- 2.4 Three Useful Invariants -- 2.5 Relativistic Reaction Rate -- 2.6 Secondary Production Spectra -- Chapter 3. Introduction to Curved Spacetime -- 3.1 Special Relativity -- 3.2 Curved Space/Spacetime -- 3.3 The Schwarzschild Metric -- Chapter 4. Physical Cosmology -- 4.1 Robertson-Walker Metric -- 4.2 Friedmann Models -- 4.2.1 Hubble Relation from the Cosmological Principle -- 4.2.2 Expansion of the Universe -- 4.2.3 Einstein-de Sitter Universe -- 4.2.4 Universe with Zero Cosmological Constant -- 4.2.5 Flat Universe -- 4.3 Luminosity and Angular-Diameter Distances -- 4.4 Event Rate of Bursting Sources -- 4.5 Flux and Intensity from Distributed Sources -- Chapter 5. Radiation Physics of Relativistic Flows -- 5.1 Radiation Preliminaries -- 5.2 Invariant Quantities -- 5.3 Blackbody Radiation Field -- 5.4 Transformed Quantities -- 5.4.1 Transformation of Total Distribution and Energy -- 5.4.2 Transformation of Differential Distributions -- 5.5 Fluxes of Relativistic Cosmological Sources -- 5.5.1 Blob Geometry -- 5.5.2 Spherical Shell Geometry -- 5.5.3 Equivalence of Blob and Blast Wave Geometries -- Chapter 6. Compton Scattering -- 6.1 Compton Effect -- 6.2 The Compton Cross Section -- 6.3 Transforming the Compton Cross Section -- 6.3.1 Differential Thomson Cross Section -- 6.3.2 Head-on Approximation -- 6.3.3 Differential Compton Cross Section -- 6.3.4 Moments of the Compton Cross Section -- 6.3.5 Compton Scattering in the δ-Function Approximation.

6.4 Energy-Loss Rates in Compton Scattering -- 6.4.1 Thomson Energy-Loss Rate -- 6.4.2 Klein-Nishina Energy-Loss Rate -- 6.5 Differential Compton Cross Sections and Spectra -- 6.5.1 Comparison of Scattered Spectra for Different ERF Photon Energies -- 6.5.2 Spectral Comparisons for Isotropic Monochromatic Photons and Power-Law Electrons -- 6.6 Thomson Scattering: Isotropic Photons and Electrons -- 6.6.1 Thomson-Scattered Radiation Spectrum in the δ-Function Approximation -- 6.6.2 Spectral Comparisons for Isotropic Power-Law Photons and Electrons -- 6.7 External Photon Fields Compton-Scattered by Jet Electrons -- 6.7.1 Thomson-Scattered Spectrum for an External Point Source of Radiation from Behind -- 6.7.2 Thomson-Scattered Spectrum for External Isotropic Radiation in the δ-Function Approximation -- 6.7.3 External Isotropic Photons Compton-Scattered by Jet Electrons -- 6.7.4 Cosmic Microwave Background Radiation Compton-Scattered by Jet Electrons -- 6.8 Accretion-Disk Field Compton-Scattered by Jet Electrons -- 6.8.1 Optically Thick Shakura-Sunyaev Disk Spectrum -- 6.8.2 Integrated Emission Spectrum from Shakura-Sunyaev Disk -- 6.8.3 Transformed Accretion-Disk Radiation Field -- 6.8.4 Thomson-Scattered Shakura-Sunyaev Disk Spectrum in the Near Field -- 6.8.5 Thomson-Scattered Shakura-Sunyaev Disk Spectrum in the Far Field -- 6.8.6 Beaming Patterns -- 6.9 Broad-Line Region Scattered Radiation -- Chapter 7. Synchrotron Radiation -- 7.1 Covariant Electrodynamics -- 7.2 Synchrotron Power and Peak Frequency -- 7.3 Elementary Synchrotron Radiation Formulae -- 7.3.1 Relations between Emitted, Received, and 90° Pitch-Angle Powers -- 7.3.2 Particle Synchrotron Radiation -- 7.3.3 Synchrotron Spectrum from a Power-Law Electron Distribution -- 7.4 δ-Function Approximation for Synchrotron Radiation -- 7.5 Equipartition Magnetic Field.

7.5.1 Equipartition Magnetic Field: Qualitative Estimate -- 7.5.2 Equipartition Magnetic Field: Quantitative Treatment -- 7.6 Energetics and Minimum Jet Powers -- 7.7 Synchrotron Self-Compton Radiation -- 7.7.1 SSC in the Thomson Regime -- 7.7.2 SSC in the Thomson Regime for Broken Power-Law Electron Distribution -- 7.7.3 Accurate SSC for General Electron Distribution -- 7.7.4 Synchrotron/SSC Model -- 7.7.5 SSC Electron Energy-Loss Rate -- 7.8 Synchrotron Self-Absorption -- 7.8.1 Einstein Coefficients -- 7.8.2 Brightness Temperature and Self-Absorbed Flux: Qualitative Discussion -- 7.8.3 Derivation of the Synchrotron Self-Absorption Coefficient -- 7.8.4 δ-Function Approximation for Synchrotron Self-Absorption -- 7.8.5 Synchrotron Self-Absorption Coefficient for Power-Law Electrons -- 7.9 Maximum Brightness Temperature -- 7.10 Compton Limits on the Doppler Factor -- 7.11 Self-Absorbed Synchrotron Spectrum -- 7.12 Hyper-Relativistic Electrons -- 7.13 Jitter Radiation -- Chapter 8. Binary Particle Collision Processes -- 8.1 Coulomb Energy Losses -- 8.1.1 Stopping Power of Cold Plasma -- 8.1.2 Thermal Relaxation -- 8.1.3 Stopping Power of Thermal Plasma -- 8.1.4 Knock-On Electrons -- 8.2 Bremsstrahlung -- 8.2.1 Electron Bremsstrahlung Energy-Loss Rate -- 8.2.2 Electron Bremsstrahlung Production Spectra -- 8.3 Secondary Nuclear Production -- 8.3.1 γ Rays from π[sup(0)] Decay -- 8.3.2 Cross Section for p + p→ π + X Production -- 8.4 Electron-Positron Annihilation Radiation -- 8.4.1 Annihilation in a Thermal Medium -- 8.4.2 Thermal Annihilation Line and Continuum Spectra -- 8.5 Nuclear γ-Ray Line Production -- Chapter 9. Photohadronic Processes -- 9.1 Scattering and Energy-Loss Timescales -- 9.2 Photopion Process -- 9.2.1 Photopion Cross Section -- 9.2.2 Analytic Expression for Photopion Cross Section.

9.2.3 Numerical Calculation of Photopion Cross Section -- 9.2.4 Photopion Energy-Loss Rate -- 9.2.5 GZK Energy -- 9.2.6 Stochastic and Continuous Energy Losses -- 9.3 Photopair Process -- 9.3.1 Photopair Cross Section -- 9.3.2 Photopair Energy-Loss Timescale -- 9.3.3 Accurate Expression for Photopair Energy-Loss Rates of Ions in an Isotropic Radiation Field -- 9.3.4 Relative Importance of Photopion and Photopair Losses -- 9.4 Expansion Losses -- 9.5 Cosmogenic Neutrino Flux -- 9.6 Ultrahigh-Energy Cosmic-Ray Evolution -- 9.6.1 Normalization to Local Luminosity Density -- 9.6.2 Energy Evolution of Cosmic-Ray Protons -- 9.6.3 Rate Density Evolution and the Star Formation Rate -- 9.7 Waxman-Bahcall Bound -- 9.8 UHECR and GZK Neutrino Intensities -- 9.9 Photonuclear Reactions -- 9.9.1 Photodisintegration Reaction Rate -- 9.9.2 Effective Photodisintegration Energy-Loss Rate -- 9.9.3 Neutrinos from Photodisintegration -- Chapter 10. γγ Pair Production -- 10.1 γγ Pair Production Cross Section -- 10.1.1 Absorption by a Blackbody and a Modified Blackbody Photon Gas -- 10.1.2 Absorption by a Power-Law Photon Gas in a Relativistic Jet -- 10.1.3 γγ Attenuation in Anisotropic Radiation Fields -- 10.2 δ-Function Approximation for σγγ -- 10.3 Opacity of the Universe to γγ Attenuation -- 10.3.1 γγ Optical Depth of the Universe -- 10.3.2 Measurements of the EBL -- 10.3.3 γγ Attenuation at Low Redshifts -- 10.3.4 γγ Attenuation at All Redshifts -- 10.4 The γ -Ray Horizon -- 10.5 Compactness Parameter -- 10.6 Minimum Doppler Factor from γγ Constraint -- 10.7 Correlated γ -Ray and Neutrino Fluxes -- 10.8 Electromagnetic Cascades -- 10.8.1 Cascades in Jets -- 10.8.2 Cascades in the Intergalactic Medium -- 10.9 γγ → ν -- Chapter 11. Blast-Wave Physics -- 11.1 Fireballs and Relativistic Blast Waves -- 11.1.1 Blast-Wave Deceleration -- 11.1.2 Blast-Wave Equation of Motion.

11.1.3 Dissipated Internal Energy -- 11.2 Elementary Blast-Wave Theory -- 11.2.1 Characteristic Electron Energies -- 11.2.2 Characteristic Synchrotron Frequencies -- 11.2.3 Afterglow Theory -- 11.3 Relativistic Shock Hydrodynamics -- 11.3.1 Relativistic Shock Thermodynamics -- 11.3.2 Synchrotron Radiation from a Relativistic Reverse Shock -- 11.4 Beaming Breaks and Jets -- 11.5 Synchrotron Self-Compton Radiation -- 11.6 Theory of the Prompt Phase -- 11.6.1 X-Ray Flares and γ-Ray Pulses from External Shocks -- 11.6.2 Colliding Shells and Internal Shocks -- 11.7 Thermal Photospheres -- 11.7.1 The Amati and Ghirlanda Relations -- 11.7.2 Thermodynamics of a Steady Relativistic Wind -- 11.7.3 Photospheric Radius -- 11.7.4 Pair Photosphere -- 11.8 Thermal Neutrons -- 11.9 GRB Cosmology -- Chapter 12. Introduction to Fermi Acceleration -- 12.1 Stochastic and Shock Fermi Acceleration -- 12.2 Wave Turbulence Spectrum -- 12.3 The Hillas Condition -- 12.4 Energy Gain per Cycle from Fermi Acceleration -- 12.5 Diffusion in Physical Space -- 12.6 Maximum Particle Energy -- Chapter 13. First-Order Fermi Acceleration -- 13.1 Nonrelativistic Shock Hydrodynamics -- 13.2 Convection-Diffusion Equation -- 13.3 Nonrelativistic Shock Acceleration -- 13.3.1 Spectral Index from Convection-Diffusion Equation -- 13.3.2 Spectral Index from Probability Arguments -- 13.3.3 Finite Shell Width -- 13.3.4 Cosmic-Ray Pressure and Shock Width -- 13.3.5 Maximum Particle Energy in Nonrelativistic Shock Acceleration -- 13.3.6 Maximum Particle Energy in Nonrelativistic Shocks -- 13.3.7 Amplification of Upstream Medium Magnetic Field -- 13.4 Relativistic Shock Acceleration -- 13.4.1 Fokker-Planck Equation for a Stationary, Parallel Shock -- 13.4.2 Spectral Index in Relativistic Shock Acceleration -- 13.4.3 Maximum Particle Energies in Relativistic Shock Acceleration.

Chapter 14. Second-Order Fermi Acceleration.
Abstract:
Bright gamma-ray flares observed from sources far beyond our Milky Way Galaxy are best explained if enormous amounts of energy are liberated by black holes. The highest- energy particles in nature--the ultra-high-energy cosmic rays--cannot be confined by the Milky Way's magnetic field, and must originate from sources outside our Galaxy. Understanding these energetic radiations requires an extensive theoretical framework involving the radiation physics and strong-field gravity of black holes. In High Energy Radiation from Black Holes, Charles Dermer and Govind Menon present a systematic exposition of black-hole astrophysics and general relativity in order to understand how gamma rays, cosmic rays, and neutrinos are produced by black holes. Beginning with Einstein's special and general theories of relativity, the authors give a detailed mathematical description of fundamental astrophysical radiation processes, including Compton scattering of electrons and photons, synchrotron radiation of particles in magnetic fields, photohadronic interactions of cosmic rays with photons, gamma-ray attenuation, Fermi acceleration, and the Blandford-Znajek mechanism for energy extraction from rotating black holes. The book provides a basis for graduate students and researchers in the field to interpret the latest results from high-energy observatories, and helps resolve whether energy released by rotating black holes powers the highest-energy radiations in nature. The wide range of detail will make High Energy Radiation from Black Holes a standard reference for black-hole research.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: