Cover image for Navigation Signal Processing for GNSS Software Receivers.
Navigation Signal Processing for GNSS Software Receivers.
Title:
Navigation Signal Processing for GNSS Software Receivers.
Author:
Pany, Thomas.
ISBN:
9781608070282
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (372 pages)
Contents:
Navigation Signal Processingfor GNSS Software Receivers -- Contents -- Preface -- Acknowledgments -- Chapter 1 Radio Navigation Signals -- 1.1 Signal Generation -- 1.2 Signal Propagation -- 1.3 Signal Conditioning -- 1.4 Motivation for a Generic Signal Model -- 1.5 Sampling -- 1.6 Deterministic Received Signal Model -- 1.7 Stochastic Noise Model -- 1.8 Short-Period Signal Model -- 1.8.1 Zeroth-Order Moment of Signal Power -- 1.8.3 Second-Order Moment of Signal Power -- 1.8.4 First-Order Moment of Signal Power Variations -- 1.8.5 Separation of Code and Carrier Correlation -- 1.9 Exemplary Signals -- 1.91 A Model for the GPS C/A-Code Signal -- 1.9.2 A Model for the Galileo E1 Open-Service Signal -- 1.9.3 Pulsed GNSS Signals -- 1.9.4 Gaussian Double Pulse -- References -- Chapter 2 Software-Defined Radio -- 2.1 Definitions -- 2.2 Communication Radios -- 2.2.1 GNU Radio -- 2.2.2 Joint Tactical Radio System -- 2.3 GNSS Software Receivers -- 2.3.1 Front Ends -- 2.3.2 Illustrative Applications -- 2.3.3 High-End GNSS Software Receivers -- 2.4 Technology Evaluation and Discussion -- References -- Chapter 3 GNSS Receiver Structure and Dataflow -- 3.1 GNSS Sample Handling -- 3.2 Module Diagram -- 3.2.1 USB Front-End Driver -- 3.2.2 IF Sample Buffer -- 3.2.3 Sensor Interface -- 3.2.4 Postprocessing Mode -- 3.2.5 Master Receiver -- 3.2.6 Receiver -- 3.2.8 Channel -- 3.2.9 Acquisition Manger -- 3.2.10 Level-1 and Level-2 Acquisitions -- 3.2.11 Navigation Processor -- 3.2.12 Positioning with RAIM -- 3.2.13 Navigation Modules -- 3.2.14 Input and Output Modules -- 3.2.15 Receiver Status -- 3.2.16 Navigation Records -- 3.2.17 AGNSS and SISNET Connection -- 3.3 Execution Flow -- 3.3.1 Computer with Four CPU Cores -- 3.3.2 Computer with a Single CPU Core -- 3.4 GNSS Reference Station Configuration -- 3.4.1 Acquisition Parameters -- 3.4.2 Tracking Parameters.

3.4.3 Performance Results -- 3.5 Discussion -- References -- Chapter 4 Signal Estimation -- 4.1 Parameters of Interest -- 4.1.1 Useful Parameters -- 4.1.2 Nuisance Parameters -- 4.1.3 Relationship Between the Parameters -- 4.2 Nonrandom Parameter Estimation -- 4.2.1 Position CRLB Without Nuisance Parameters -- 4.2.2 Position Estimation with Nuisance Parameters -- 4.2.3 Single-Step Maximum Likelihood Estimation -- 4.2.4 Cascaded Estimation -- 4.3 LSQ Correlators/Discriminators -- 4.3.1 Model for One or More Propagation Paths -- 4.3.2 Single Propagation Path -- 4.3.3 Correlation Point -- 4.3.4 Linearization -- 4.3.5 Multiple Propagation Paths -- 4.3.6 Two Propagation Paths: Code-Phase CRLB -- 4.3.7 Two Propagation Paths: Doppler CRLB -- 4.3.8 Two Propagation Paths: Remark on Other Bounds -- 4.4 Data Reduction -- 4.4.1 Sufficient Statistics -- 4.4.2 Multicorrelator Approach -- 4.4.3 First-Derivative Approach -- 4.4.4 Colored Noise -- 4.5 Bayesian Approach -- 4.5.1 Minimum Mean-Squared Error Estimation -- 4.5.2 Kalman-Bucy Filter -- 4.5.3 Other Filters -- 4.5.4 Use of Kalman Filters in GNSS Signal Processing -- 4.6 Squaring Loss Revisited -- 4.7 Numerical Simulation -- 4.7.1 Evaluation of Bounds -- 4.7.2 Cost Function -- 4.7.3 LSQ Solution -- 4.8 Discussion -- References -- Chapter 5 Signal Detection -- 5.1 Detection Principles -- 5.1.1 Simple Hypothesis Testing -- 5.1.2 Composite Hypothesis Testing -- 5.2 Detection Domains -- 5.2.1 Pseudorange Domain Detection -- 5.2.2 Position Domain Detection -- 5.3 Preprocessing -- 5.4 Clairvoyant Detector for Uniformly Distributed Phase -- 5.5 Energy Detector -- 5.6 Bayesian Detector -- 5.7 Generalized Likelihood-Ratio Detector -- 5.7.1 Single Coherent Integration -- 5.7.2 Multiple Coherent Integrations -- 5.7.3 Considering Navigation Signal Interference -- 5.7.4 Data and Pilot -- 5.8 System-Detection Performance.

5.8.1 Idealized Assumptions -- 5.8.2 Mean Acquisition Time -- 5.8.3 System Probabilities -- 5.8.4 Independent Bin Approximation -- 5.8.5 Code-Phase and Doppler Losses -- 5.9 Long Integration Times and Differential Detectors -- 5.10 Discussion -- References -- Chapter 6 Sample Preprocessing -- 6.1 ADC Quantization -- 6.1.1 Quantization Rule -- 6.1.2 Matched Filter -- 6.1.3 Evaluation of Expected Values -- 6.1.4 Infinite Number of Bits -- 6.1.5 Numerical Evaluation -- 6.2 Noise-Floor Determination -- 6.3 ADC Requirements for Pulse Blanking -- 6.3.1 Front-End Gain and Recovery Time -- 6.3.2 Pulse Blanking -- 6.3.3 ADC Resolution -- 6.4 Handling Colored Noise -- 6.4.1 Spectral Whitening -- 6.4.2 Modified Reference Signals -- 6.4.3 Overcompensation of the Incoming Signal -- 6.4.4 Implementation Issues -- 6.5 Sub-Nyquist Sampling -- References -- Chapter 7 Correlators -- 7.1 Correlator and Waveform-Based Tracking -- 7.2 Generic Correlator -- 7.2.1 Expected Value -- 7.2.2 Covariance -- 7.2.3 Variance -- 7.3 Correlator Types with Illustration -- 7.3.1 P-Correlator -- 7.3.2 F-Correlator -- 7.3.3 D-Correlator -- 7.3.4 W-Correlator -- 7.4 Difference Correlators -- 7.4.1 Single-Difference P-Correlators -- 7.4.2 Double-Difference P-Correlators -- 7.5 Noisy Reference Signal for Codeless Tracking -- 7.5.1 Expected Value -- 7.5.2 Covariance -- 7.5.3 Variance -- 7.5.4 L2P(Y)-Code Carrier-Phase Discriminator Noise -- 7.6 Incorporating Colored Noise -- 7.6.1 White-Noise Transformation -- 7.6.2 Early-Late Code Discriminator with Infinite Sample Rate -- 7.7 Comparison of Finite and Infinite Sample Rates -- References -- Chapter 8 Discriminators -- 8.1 Noncoherent Discriminators -- 8.1.1 Code Discriminator -- 8.1.2 Doppler Discriminator -- 8.1.3 Phase Discriminator -- 8.1.4 Clipping -- 8.2 S-Curve Shaping -- 8.2.1 Code-Discriminator Performance Characteristics.

8.2.2 Optimum S-Curve -- 8.2.3 Frequency-Domain S-Curve Shaping -- 8.2.4 Discussion -- 8.3 Multipath Estimating Techniques -- 8.3.1 The LSQ Equations -- 8.3.2 Calibration -- 8.3.3 General Procedure -- 8.3.4 Correlator Placement -- 8.3.5 Initial Values -- 8.3.6 Number of Required Iterations -- 8.3.7 Multipath Detection -- 8.3.8 Discussion -- 8.4 From Discriminator Noise to Position Accuracy -- References -- Chapter 9 Receiver Core Operations -- 9.1 Test-System Configuration -- 9.2 Signal-Sample Bit Conversion -- 9.2.1 Algorithm -- 9.2.2 Numerical Performance -- 9.2.3 Discussion and Other Algorithms -- 9.3 Resampling -- 9.3.1 Algorithm -- 9.3.2 Numerical Performance -- 9.3.3 NCO Resolution -- 9.3.4 Discussion and Other Algorithms -- 9.4 Correlators -- 9.4.1 SDR Implementation -- 9.4.2 Discussion and Other Algorithms -- 9.5 Fast Fourier Transform -- 9.5.1 Algorithm -- 9.5.2 Convolution Theorem -- 9.5.3 Time-Domain Correlation and Data Preparation -- 9.5.4 Spectral Shifting -- 9.5.5 Limited-Size Inverse FFT -- 9.5.6 Circular Correlation with Doppler Preprocessing -- 9.5.7 Handling Secondary Codes -- 9.5.8 Asymptotic Computational Performance -- 9.5.9 Reported FFT Performance Values -- 9.5.10 Discussion and Number of Correlators -- 9.6 Reality Check for Signal Tracking -- 9.7 Power Consumption -- 9.8 Discussion -- References -- Chapter 10 GNSS SDR RTK System Concept -- 10.1 Technology Enablers -- 10.1.1 Ultra-Mobile PCs -- 10.1.2 Cost-Effective High-Rate Data Links -- 10.2 System Overview -- 10.2.1 Setup -- 10.2.2 Sample Applications -- 10.2.3 Test Installation and Used Signals -- 10.3 Key Algorithms and Components -- 10.4 High-Sensitivity Acquisition Engine -- 10.4.1 Doppler Search Space -- 10.4.2 Correlation Method -- 10.4.3 Clock Stability -- 10.4.4 Line-of-Sight Dynamics -- 10.4.5 Flow Diagram and FFT Algorithms -- 10.4.6 Acquisition Time.

10.5 Assisted Tracking -- 10.5.1 Vector-Hold Tracking -- 10.5.2 Double-Difference Correlator -- 10.6 Low-Cost Pseudolites -- 10.6.1 Continuous-Time Signals -- 10.6.2 Pulsed Signals -- 10.7 RTK Engine -- References -- Chapter 11 Exemplary Source Code -- 11.1 Intended Use -- 11.2 Setup -- 11.2.1 Required Software -- 11.2.2 Preparing the Simulation -- 11.2.3 Signal Selection and Simulation Parameters -- 11.3 Routines -- 11.3.1 True Cramér-Rao Lower Bound -- 11.3.2 Discriminator Noise Analysis -- 11.3.3 FFT Acquisition -- 11.3.4 Simplified Vector Tracking with Multipath Mitigation and Spectral Whitening -- Appendix -- A.1 Complex Least-Squares Adjustment -- A.1.1 Definitions -- A.1.2 Probability Density Function -- A.1.3 The Adjustment -- A.1.4 Real- and Complex-Valued Estimated Parameters -- A.1.5 A Posteriori Variance of Unit Weight -- A.1.6 Example -- A.1.7 Discussion -- A.2 Representing Digital GNSS Signals -- A.2.1 Complex-Valued Input Signal -- A.2.2 Real-Valued Input Signal -- A.2.3 Comparing Real- and Complex-Valued Signals -- A.3 Correlation Function Invariance -- A.4 Useful Formulas -- A.4.1 Fourier Transform -- A.4.2 Correlation Function -- A.4.3 Correlation with an Auxiliary Function -- A.4.4 Correlation with Doppler -- A.4.5 Correlation in Continuous Time -- A.4.6 Probability Density Functions -- References -- Abbreviations -- List of Symbols -- About the Author -- Index.
Abstract:
The advancement of software radio technology has provided an opportunity for the design of performance-enhanced GNSS receivers that are more flexible and easier to develop than their FPGA or ASIC based counterparts. Filling a gap in the current literature on the subject, this highly practical resource offers you an in-depth understanding of navigation signal detection and estimation algorithms and their implementation in a software radio. This unique book focuses on high precision applications for GNSS signals and an innovative RTK receiver concept based on difference correlators.You learn how to develop navigation receivers for top performance using basic algorithms, like correlation and tracking, which can be understood on an intuitive level. Additionally, the book provides you with a theoretical framework for signal estimation and detection that gives you the knowledge you need to make performance assessments without building a receiver. The theoretical treatment also gives you hints for choosing optimal algorithms for your projects in the field.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: