
Broadband Communications via High-Altitude Platforms.
Title:
Broadband Communications via High-Altitude Platforms.
Author:
Grace, David.
ISBN:
9780470971833
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (400 pages)
Contents:
Broadband Communications via High-Altitude Platforms -- Contents -- List of Figures -- List of Tables -- List of Contributors -- Preface -- Part One: Basics, Enabling Technologies and Economics -- 1 Introduction -- 1.1 Introduction -- 1.2 History -- 1.3 Wireless Communications in a HAP Environment -- 1.3.1 Comparison of HAPs Capabilities when Compared with Terrestrial and Satellite Systems -- 1.3.2 Regulatory Environment and Restrictions -- 1.4 Candidate Standards for Provision of Services and Applications from HAPs -- 1.4.1 Mobile Cellular Standards -- 1.4.2 IEEE 802 Wireless Standards -- 1.4.3 Multipoint Distribution Services for Multimedia Applications - MMDS and LMDS -- 1.4.4 DVB Standards -- 1.5 Overview of Past and Present HAP Related Projects, Trials and Development Plans -- 1.5.1 StratXX AG - X-Station -- 1.5.2 ERS srl -- 1.5.3 CAPANINA -- 1.5.4 USEHAAS -- 1.5.5 COST 297 -- 1.5.6 The Japanese National Project -- 1.5.7 The Korean National Project -- 1.5.8 NASA Activity -- 1.5.9 AV Inc -- 1.5.10 Lockheed Martin, Boeing and Worldwide Aeros -- 1.5.11 Advanced Technologies Group (ATG) -- 1.5.12 European Space Agency (ESA) Activity -- 1.5.13 Flemish Institute for Technological Research (VITO) -- 1.5.14 QinetiQ Ltd -- 1.5.15 Space Data Corporation -- 1.5.16 HeliNet -- 1.5.17 Lindstrand Technologies Ltd (UK)/University of Stuttgart -- 1.5.18 SkyStation -- 1.5.19 Angel Technologies - HALO -- References -- 2 Aeronautics and Energetics -- 2.1 Operating Environment and Related Challenges -- 2.1.1 The Layers of the Atmosphere -- 2.2 Types of Airborne Vehicles Used for HAPs -- 2.2.1 Aerostatic Aerial Platforms -- 2.2.2 Aerodynamic Aerial Platforms -- 2.3 Power Subsystem Alternatives -- 2.3.1 Conventional Energy Sources for HAPs -- 2.3.2 Renewable Energy Sources for HAPs -- 2.3.3 Remotely Beamed Energy for HAPs -- 2.4 Flight/Altitude Control.
2.4.1 HAP Station Keeping -- 2.4.2 HAP Mobility Models -- 2.5 Typical Characteristics of HAP Aircraft and Airships -- References -- 3 Operating Scenarios and Reference Architectures -- 3.1 Operating Scenarios -- 3.1.1 HAPs User Scenarios -- 3.1.2 HAPs Network Scenarios -- 3.2 Antenna Requirements and Related Challenges -- 3.2.1 Introduction -- 3.2.2 Types of Antennas for the Delivery of Broadband Services in the mm-Wave Bands -- 3.2.3 Antenna Model Example -- 3.3 System and Network Architecture of HAP-Based Communication Systems -- 3.3.1 Overview -- 3.3.2 HAP Architectures -- 3.3.3 Broadband Communications Links -- References -- 4 Applications and Business Modelling -- 4.1 Introduction -- 4.2 Applications and Services -- 4.2.1 Short Term -- 4.2.2 Medium Term -- 4.2.3 Long Term -- 4.3 Business Model Introduction -- 4.3.1 Operating Scenario -- 4.3.2 Business Model Assumption -- 4.4 Service Provider Centric Models -- 4.4.1 Bandwidth Utilisation and Contention Ratio -- 4.4.2 WLAN to Trains -- 4.4.3 Backhaul for Terrestrial Base Stations/Access Points -- 4.4.4 Broadband Internet -- 4.4.5 Broadcast/Multicast -- 4.4.6 Event Servicing and Disaster Relief -- 4.4.7 Third Generation (3G) Mobile Telephone -- 4.5 HAP Operator Centric Model -- 4.5.1 Financial Model Assumptions -- 4.5.2 Unmanned Solar Powered Airship -- 4.5.3 Fuel Powered Manned Plane -- 4.5.4 Fuel Powered Unmanned Plane -- 4.5.5 Solar Powered Unmanned Plane -- 4.6 Risk Assessment -- 4.6.1 Technology Assessment -- 4.6.2 Market Assessment -- References -- 5 Future Development of HAPs and HAP-Based Applications -- 5.1 Trends in Aeronautical Development -- 5.2 HAP Roadmaps for Different Types of Applications -- 5.2.1 Application Example 1: WLAN to Trains -- 5.2.2 Application Example 2: Backhaul for Terrestrial Base Stations/Access Points -- 5.2.3 Application Example 3: Broadband Internet.
5.2.4 Application Example 4: Broadcast/Multicast -- 5.2.5 Application Example 5: 3G Mobile Communications -- 5.3 Telecommunication Missions -- 5.3.1 The Payload for Telecommunications Applications -- References -- Part Two: Broadband Wireless Communications from High Altitude Platforms -- 6 HAP System Operating Environment -- 6.1 Operating Environment and Related Limitations -- 6.2 Propagation Channel Modelling -- 6.3 HAP Radio Frequency Propagation Channel Modelling -- 6.3.1 Absorption Due to Water Vapour and Atmospheric Gases -- 6.3.2 Scintillation -- 6.3.3 Rain Fading -- 6.3.4 Rain Fading and Scintillation -- 6.3.5 Influence of Hydrometeor Effects on Cross Polarisation -- 6.3.6 The Effects of Surrounding Environment -- 6.4 Conclusion -- References -- 7 FSO in HAP-Based Communication Systems -- 7.1 Applicability of FSO Technology to HAP Networks -- 7.1.1 Atmospheric Effects -- 7.1.2 HAP FSO-Link Configurations -- 7.2 Physical Layer Aspects for FSO Links in HAP Networks -- 7.3 Free Space Optics for Optical Transport Networks -- References -- 8 Advanced Communication Techniques as Enablers for HAP-Based Communication Systems -- 8.1 Modern Wireless System Design Concepts -- 8.1.1 Smart Antennas -- 8.1.2 Cognitive Radio and Dynamic Spectrum Management -- 8.1.3 Cross-Layer Design and Optimisation -- 8.2 Diversity Techniques -- 8.2.1 Diversity Techniques in Broadband HAP Communications -- 8.3 MIMO Systems -- 8.3.1 Spatial Multiplexing -- 8.3.2 Space-Time Coding -- 8.3.3 MIMO Systems in HAP Broadband Communications -- 8.4 Adaptive Coding and Modulation Schemes -- 8.4.1 ACM in HAP Broadband Communications -- 8.5 Advanced Radio Resource Management Techniques -- 8.5.1 Introduction -- 8.5.2 Scenario -- 8.5.3 Channel Assignment Strategy -- 8.5.4 Performance -- 8.5.5 No Connection Drop Algorithm.
8.5.6 No Connection Drop Algorithm with No Downlink Threshold Detection -- 8.5.7 No Threshold Detection -- 8.5.8 Discussion -- References -- Part Three: Multiple High Altitude Platforms -- 9 Multiple HAP Networks -- 9.1 Why Multiple HAP Constellations? -- 9.1.1 Model of the Multiple HAP System -- 9.2 Multiple HAP Constellation Planning -- 9.2.1 Multiple HAPs Scenario with Directional HAP Antennas -- 9.3 User Antenna Pointing Error in Multiple HAP Systems -- 9.3.1 Methods for Characterising User Antenna Pointing Error -- 9.3.2 Effect of Pointing Error -- 9.4 Two-Ring Constellation Design for Multiple HAP Systems -- 9.4.1 Two-Ring Constellations Overview -- 9.5 Constraints of Two-Ring Constellation Designs -- 9.5.1 Constellation Design Strategies -- References -- 10 Networking Implications of Using Multiple HAP Constellations -- 10.1 Network Protocols -- 10.1.1 IP Foundations -- 10.1.2 Mobile IP Protocol -- 10.1.3 Hierarchical MIP -- 10.2 Mobility Management in HAP-Based Communication Systems -- 10.2.1 Access-Level Mobility -- 10.2.2 Micro-Mobility -- 10.2.3 Macro-Mobility -- 10.2.4 Types of Mobile Users -- 10.2.5 Network Mobility -- 10.3 Mobility and Backhaul Load Reduction Techniques -- 10.3.1 Placement of Home Agents -- 10.3.2 Multihoming Support -- 10.3.3 MN Movement Predictability -- References -- Index.
Abstract:
"The work is well referenced and includes over one hundred and fifty figures and more than seventy-five tables. Contributors include professionals and academics in the field of communications engineering from Slovenia, Israel, Thailand and the UK." (Book News Inc., February 2011).
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View