
Optoelectronic Integrated Circuit Design and Device Modeling.
Title:
Optoelectronic Integrated Circuit Design and Device Modeling.
Author:
Gao, Jianjun.
ISBN:
9780470827352
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (310 pages)
Contents:
Optoelectronic Integrated Circuit Design and Device Modeling -- Contents -- Preface -- About the Author -- Nomenclature -- 1 Introduction -- 1.1 Optical Communication System -- 1.2 Optoelectronic Integrated Circuit Computer-Aided Design -- 1.3 Organization of This Book -- References -- 2 Basic Concept of Semiconductor Laser Diodes -- 2.1 Introduction -- 2.2 Basic Concept -- 2.2.1 Atom Energy -- 2.2.2 Emission and Absorption -- 2.2.3 Population Inversion -- 2.3 Structures and Types -- 2.3.1 Homojunction and Heterojunction -- 2.3.2 Index Guiding and Gain Guiding -- 2.3.3 Fabry-Perot Cavity Lasers -- 2.3.4 Quantum-Well Lasers -- 2.3.5 Distributed Feedback Lasers -- 2.3.6 Vertical-Cavity Surface-Emitting Lasers -- 2.4 Laser Characteristics -- 2.4.1 Single-Mode Rate Equations -- 2.4.2 Multimode Rate Equations -- 2.4.3 Small-Signal Intensity Modulation -- 2.4.4 Small-Signal Frequency Modulation -- 2.4.5 Large-Signal Transit Response -- 2.4.6 Second Harmonic Distortion -- 2.4.7 Relative Intensity Noise -- 2.4.8 Measurement Technique -- 2.5 Summary -- References -- 3 Modeling and Parameter Extraction Techniques of Lasers -- 3.1 Introduction -- 3.2 Standard Double Heterojunction Semiconductor Lasers -- 3.2.1 Large-Signal Model -- 3.2.2 Small-Signal Model -- 3.2.3 Noise Model -- 3.3 Quantum-Well Lasers -- 3.3.1 One-Level Equivalent Circuit Model -- 3.3.2 Two-Level Equivalent Circuit Model -- 3.3.3 Three-Level Equivalent Circuit Model -- 3.4 Parameter Extraction Methods -- 3.4.1 Direct-Extraction Method -- 3.4.2 Semi-Analytical Method -- 3.5 Summary -- References -- 4 Microwave Modeling Techniques of Photodiodes -- 4.1 Introduction -- 4.2 Physical Principles -- 4.3 Figures of Merit -- 4.3.1 Responsivity -- 4.3.2 Quantum Efficiency -- 4.3.3 Absorption Coefficient -- 4.3.4 Dark Current -- 4.3.5 Rise Time and Bandwidth -- 4.3.6 Noise Currents.
4.4 Microwave Modeling Techniques -- 4.4.1 PIN PD -- 4.4.2 APD -- 4.5 Summary -- References -- 5 High-Speed Electronic Semiconductor Devices -- 5.1 Overview of Microwave Transistors -- 5.2 FET Modeling Technique -- 5.2.1 FET Small-Signal Modeling -- 5.2.2 FET Large-Signal Modeling -- 5.2.3 FET Noise Modeling -- 5.3 GaAs/InP HBT Modeling Technique -- 5.3.1 GaAs/InP HBT Nonlinear Model -- 5.3.2 GaAs/InP HBT Linear Model -- 5.3.3 GaAs/InP HBT Noise Model -- 5.3.4 Parameter Extraction Methods -- 5.4 SiGe HBT Modeling Technique -- 5.5 MOSFET Modeling Technique -- 5.5.1 MOSFET Small-Signal Model -- 5.5.2 MOSFET Noise Model -- 5.5.3 Parameter Extraction Methods -- 5.6 Summary -- References -- 6 Semiconductor Laser and Modulator Driver Circuit Design -- 6.1 Basic Concepts -- 6.1.1 NRZ and RZ Data -- 6.1.2 Optical Modulation -- 6.1.3 Optical External Modulator -- 6.2 Optoelectronic Integration Technology -- 6.2.1 Monolithic Optoelectronic Integrated Circuits -- 6.2.2 Hybrid Optoelectronic Integrated Circuits -- 6.3 Laser Driver Circuit Design -- 6.4 Modulator Driver Circuit Design -- 6.4.1 FET-Based Driver Circuit -- 6.4.2 Bipolar Transistor-Based Driver Integrated Circuit -- 6.4.3 MOSFET-Based Driver Integrated Circuit -- 6.5 Distributed Driver Circuit Design -- 6.6 Passive Peaking Techniques -- 6.6.1 Capacitive Peaking Techniques -- 6.6.2 Inductive Peaking Techniques -- 6.7 Summary -- References -- 7 Optical Receiver Front-End Integrated Circuit Design -- 7.1 Basic Concepts of the Optical Receiver -- 7.1.1 Signal-to-Noise Ratio -- 7.1.2 Bit Error Ratio -- 7.1.3 Sensitivity -- 7.1.4 Eye Diagram -- 7.1.5 Signal Bandwidth -- 7.1.6 Dynamic Range -- 7.2 Front-End Circuit Design -- 7.2.1 Hybrid and Monolithic OEIC -- 7.2.2 High-Impedance Front-End -- 7.2.3 Transimpedance Front-End -- 7.3 Transimpedance Gain and Equivalent Input Noise Current.
7.3.1 S Parameters of a Two-Port Network -- 7.3.2 Noise Figure of a Two-Port Network -- 7.3.3 Transimpedance Gain -- 7.3.4 Equivalent Input Noise Current -- 7.3.5 Simulation and Measurement of Transimpedance Gain and Equivalent Input Noise Current -- 7.4 Transimpedance Amplifier Circuit Design -- 7.4.1 BJT-Based Circuit Design -- 7.4.2 HBT-Based Circuit Design -- 7.4.3 FET-Based Circuit Design -- 7.4.4 MOSFET-Based Circuit Design -- 7.4.5 Distributed Circuit Design -- 7.5 Passive Peaking Techniques -- 7.5.1 Inductive Peaking Techniques -- 7.5.2 Capacitive Peaking Techniques -- 7.6 Matching Techniques -- 7.7 Summary -- References -- Index.
Abstract:
In Optoelectronic Integrated Circuit Design and Device Modeling, Professor Jianjun Gao introduces the fundamentals and modeling techniques of optoelectronic devices used in high-speed optical transmission systems. Gao covers electronic circuit elements such as FET, HBT, MOSFET, as well as design techniques for advanced optical transmitter and receiver front-end circuits. The book includes an overview of optical communication systems and computer-aided optoelectronic IC design before going over the basic concept of laser diodes. This is followed by modeling and parameter extraction techniques of lasers and photodiodes. Gao covers high-speed electronic semiconductor devices, optical transmitter design, and optical receiver design in the final three chapters. Addresses a gap within the rapidly growing area of transmitter and receiver modeling in OEICs Explains diode physics before device modeling, helping readers understand their equivalent circuit models Provides comprehensive explanations for E/O and O/E conversions done with laser and photodiodes Covers an extensive range of devices for high-speed applications Accessible for students new to microwaves Presentation slides available for instructor use This book is primarily aimed at practicing engineers, researchers, and post-graduates in the areas of RF, microwaves, IC design, photonics and lasers, and solid state devices. The book is also a strong supplement for senior undergraduates taking courses in RF and microwaves. Lecture materials for instructors available at www.wiley.com/go/gao.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View