
Modern Communications Jamming Principles and Techniques : Principles and Techniques.
Title:
Modern Communications Jamming Principles and Techniques : Principles and Techniques.
Author:
Poisel, Richard.
ISBN:
9781608071661
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (894 pages)
Contents:
Modern Communications Jamming Principles and Techniques Second Edition -- Contents -- Preface to the Second Edition -- Preface to the First Edition -- Chapter 1 Modern Communications and Electronic Countermeasures -- 1.1 Introduction -- 1.2 Electronic Warfare -- 1.3 Antijam Communications -- 1.4 Networks -- 1.5 Spread Spectrum Technology -- 1.5.1 Low Probability of Detection -- 1.5.2 Low Probability of Intercept -- 1.5.3 Low Probability of Exploitation -- 1.5.4 Antijam -- 1.6 AJ Signal Types -- 1.6.1 Direct-Sequence Spread Spectrum -- 1.6.2 Frequency-Hopping Spread Spectrum -- 1.6.3 Time-Hopping Spread Spectrum -- 1.6.4 Hybrids -- 1.7 Synchronization -- 1.8 Communication System Model -- 1.9 Urban Electronic Warfare -- 1.10 Concluding Remarks -- References -- Chapter 2 Detection of Signals in Noise -- 2.1 Introduction -- 2.2 Signal Structure -- 2.3 Receiver Structure -- 2.4 Binary Decision Theory -- 2.4.1 Statistical Signal Detection Theory -- 2.4.2 Bayesian Approach -- 2.4.3 Minimum Probability of Error Decision Rule -- 2.4.4 Maximum A Posteriori Interpretation -- 2.4.5 Neyman-Pearson Approach -- 2.5 Receiving System Noise Power -- 2.5.1 Channel Model -- 2.5.2 Plasma Noise -- 2.6 Noise Amplitude Probability Density Functions -- 2.6.1 Gaussian -- 2.6.2 Rayleigh -- 2.6.3 Ricean -- 2.6.4 Nakagami -- 2.6.5 Log-Normal -- 2.6.6 Illustrative Noise Amplitudes -- 2.6.7 False Alarm Time -- 2.6.8 Probability of Detection -- 2.7 Radiometric Detection of Signals in Noise -- 2.7.1 Introduction -- 2.7.2 Radiometer Performance -- 2.7.3 Effects of Fluctuating Noise Levels on Radiometric Detection -- 2.7.4 Effects of Noise Power Level Uncertainty in Radiometric Detectors -- 2.7.5 Energy Detection of a Signal with Random Amplitude -- 2.8 Urban RF Noise -- 2.8.1 Introduction -- 2.8.2 Urban Noise Overview -- 2.8.3 Vehicle Ignition Systems.
2.8.4 Fluorescent Lighting -- 2.8.5 Microwave Oven Noise -- 2.8.6 Electric Motor Noise -- 2.8.7 Welder Noise -- 2.8.8 Relay Noise -- 2.8.9 Characteristics and Impact of Man-Made Noise -- 2.8.10 Mathematical Representation of Impulsive Noise -- 2.8.11 Man-Made Noise Power -- 2.8.12 Alpha-Stable Processes -- 2.8.13 Summary -- 2.9 Effects of Impulsive Noise on Signal Detection -- 2.9.1 Introduction -- 2.9.2 Receiver Structures -- 2.9.3 Performance -- 2.9.4 Summary -- 2.10 Concluding Remarks -- References -- Appendix 2A Chi-Square Distribution -- 2A.1 Probability Density Function -- 2A.2 Cumulative Distribution Function -- Chapter 3 Signaling for Modern Communications -- 3.1 Introduction -- 3.2 Signaling -- 3.3 Binary Signal Reception -- 3.4 Error Control -- 3.5 Coding Techniques -- 3.5.1 Block Coding -- 3.5.2 Convolutional Coding -- 3.6 Bit Interleaving -- 3.7 Side Information -- 3.7.1 Jammer State Information -- 3.7.2 Channel State Information -- 3.8 Signal-to-Noise Ratio -- 3.9 Channel Bandwidth -- 3.10 Phase Shift Keying -- 3.10.1 Introduction -- 3.10.2 BPSK -- 3.10.3 QPSK -- 3.10.4 DBPSK -- 3.11 Frequency Shift Keying -- 3.11.1 Modulations -- 3.11.2 BFSK -- 3.11.3 MFSK -- 3.12 Quadrature Amplitude Modulation -- 3.12.1 2QAM and 4QAM Modulations -- 3.12.2 16QAM Performance with Gray Mapping -- 3.13 Spread Spectrum -- 3.13.1 Processing Gain -- 3.13.2 Direct-Sequence Spread Spectrum -- 3.13.3 Frequency-Hopping Spread Spectrum -- 3.13.4 DSSS and FHSS Hybrid Spread Spectrum -- 3.13.5 Chaotic Shift Keying -- 3.13.6 Time-Hopping Spread Spectrum -- 3.14 Orthogonal Frequency Division Multiplexing -- 3.14.1 Single-Carrier Modulation System -- 3.14.2 Frequency Division Multiplexing Modulation System -- 3.14.3 Orthogonality and OFDM -- 3.14.4 Implementation of OFDM Systems -- 3.14.5 Multipath Channels and the Use of Cyclic Prefix -- 3.15 Concluding Remarks.
References -- Chapter 4 Antijam Signal Detection -- 4.1 Introduction -- 4.2 Signal Detection -- 4.3 Receivers -- 4.3.1 Staring Receivers -- 4.3.2 Scanning Receivers -- 4.3.3 Detectors -- 4.3.4 Filter Bank Combiner -- 4.4 DSSS Signal Detection -- 4.4.1 Signal Specific Detection -- 4.4.2 Nonsignal Specific Detection -- 4.5 Frequency-Hopping Spread Spectrum SignalDetection -- 4.5.1 Introduction -- 4.5.2 Searching for FHSS Targets -- 4.6 FHSS Signal Sorting -- 4.6.1 Sort Parameters -- 4.6.2 Tracking Metrics -- 4.7 Performance Simulation -- 4.7.1 Simulation Description -- 4.7.2 Statistics Collected -- 4.7.3 Results -- 4.8 Concluding Remarks -- References -- Chapter 5 Radio Signal Propagation -- 5.1 Introduction -- 5.2 Propagation of Signals in the VHF Range and Above -- 5.2.1 Introduction -- 5.2.2 Free-Space Propagation -- 5.2.3 Propagation Close to the Earth -- 5.2.4 Smooth Earth -- 5.2.5 Effective Antenna Height -- 5.2.6 Surface Roughness -- 5.2.7 Diffraction Loss -- 5.2.8 Terrain Irregularity -- 5.2.9 Attenuation Due to Woodlands -- 5.2.10 Multipath Reception -- 5.2.11 Doppler Shift -- 5.2.12 Oxygen Absorption at 60 GHz -- 5.2.13 Propagation Models -- 5.3 HF Signal Propagation -- 5.3.1 Introduction -- 5.3.2 Noise -- 5.3.3 Ground Wave -- 5.3.4 Sky Wave -- 5.4 Concluding Remarks -- References -- Chapter 6 Feedback Shift Registers and Recursive Sequences -- 6.1 Introduction -- 6.2 Galois Fields -- 6.2.1 Polynomials -- 6.3 Shift Registers -- 6.4 Maximal Sequences -- 6.5 Correlation Functions -- 6.6 Properties of m-Sequences -- 6.7 Product Codes -- 6.7.1 Gold Codes -- 6.7.2 Kasami Codes -- 6.8 LFSR Design -- 6.8.1 Synthesis of m-Sequence LFSRs -- 6.8.2 Other Ways to Generate m-Sequences -- 6.9 Applications -- 6.9.1 FHSS -- 6.9.2 DSSS -- 6.10 Nonlinear Feedback Shift Registers -- 6.10.1 Nonlinear Combination Generators -- 6.10.2 Nonlinear Filter Generators.
6.10.3 Variable Clock -- 6.11 Concluding Remarks -- References -- Chapter 7 Synchronization and Tracking in SpreadSpectrum Systems -- 7.1 Introduction -- 7.2 DSSS Synchronization -- 7.2.1 DSSS Code Synchronization -- 7.2.2 Chip Timing Synchronization -- 7.2.3 Non-Gaussian Noise -- 7.2.4 Code Synchronization for Band-Limited DSSS Systems -- 7.3 DSSS Tracking -- 7.4 FHSS Synchronization -- 7.4.1 Matched Filter -- 7.4.2 Serial Search -- 7.4.3 Two-Step Synchronization -- 7.4.4 Comparison of Mean Acquisition Times -- 7.5 FHSS Tracking -- 7.5.1 Early-Late Gate Tracking -- 7.6 Concluding Remarks -- References -- Chapter 8 Jamming Techniques -- 8.1 Introduction -- 8.2 Jamming Strategies -- 8.2.1 Partial Dwell Jamming of FHSS Systems -- 8.2.2 Noise Jamming -- 8.2.3 Tone Jamming -- 8.2.4 Swept Jamming -- 8.2.5 Pulse Jamming -- 8.2.6 Follower Jamming -- 8.2.7 Smart Jamming -- 8.3 Asset Sharing -- 8.3.1 Look-Through -- 8.3.2 Power Sharing -- 8.3.3 Time Sharing -- 8.4 Jamming Power to Signal Power Ratios -- 8.4.1 Rn Model JSR -- 8.4.2 Two-Ray Propagation JSR -- 8.4.3 Nicholson JSR -- 8.4.4 Egli Model JSR -- 8.5 Jammer Platform Configurations -- 8.6 Concluding Remarks -- References -- Chapter 9 Blind CDMA Code Discovery -- 9.1 Introduction -- 9.2 CDMA Signals -- 9.3 Single Code Discovery -- 9.4 Blind Estimation of Multiple Codes with Subspace Decomposition and MUSIC -- 9.4.1 Signal Model -- 9.4.3 Performance -- 9.4.4 Summary -- 9.5 Blind Estimation of Multiple Codes with Iterative Subspace Decomposition -- 9.5.1 Iterative Subspace Method -- 9.6 Blind Discovery of DSSS m-Sequence Chip Codes -- 9.7 Concluding Remarks -- References -- Chapter 10 Electronic Warfare and Direct SequenceSpread Spectrum Systems -- 10.1 Introduction -- 10.2 DSSS Communication Systems -- 10.2.1 Introduction -- 10.2.2 DSSS Transmitter -- 10.2.3 Receiver -- 10.2.4 Spreading Codes.
10.3 Spectral Characteristics of DSSS -- 10.3.1 Signal Formats -- 10.4 BBN Jamming of DSSS Systems -- 10.4.1 BPSK and QPSK -- 10.4.2 BBN Jamming of Chaotic Systems -- 10.5 PBN Jamming of DSSS Systems -- 10.6 Pulse Jamming of DSSS Systems -- 10.6.1 Pulsed Jamming of Uncoded DSSS Systems -- 10.6.2 Pulsed Jamming of Repeat Coded BPSK DSSS Systems -- 10.7 Tone Jamming of DSSS Systems -- 10.7.1 Introduction -- 10.7.2 Jammer -- 10.7.3 Received Signals -- 10.7.4 Correlator Outputs -- 10.7.5 Single-Tone Jamming -- 10.7.6 Single-Tone Jamming of Chaotic Systems -- 10.7.7 Multitone Jamming -- 10.7.8 Comparison of Various Strategies -- 10.7.9 Summary -- 10.8 Concluding Remarks -- References -- Chapter 11 Electronic Warfare and Fast Frequency Hopping Systems -- 11.1 Introduction -- 11.2 Channel Structure -- 11.3 Receiver Architecture -- 11.4 Multiple Dwells Per Data Bit -- 11.5 BBN Jamming of FFHSS Systems -- 11.6 Follower Jamming of FFHSS Systems -- 11.6.1 Follower/NBN Jamming -- 11.6.2 Follower/Tone Jamming -- 11.6.3 Summary for Follower Jamming -- 11.7 PBN Jamming of FFHSS Systems -- 11.7.1 Uncoded Signals -- 11.7.2 Error Coded Signals -- 11.7.3 Narrowband Noise Jamming -- 11.8 Single-Tone Jamming of FFHSS Systems -- 11.9 Multiple-Tone Jamming of FFHSS Systems -- 11.9.1 Uncoded FFHSS MFSK Signals -- 11.9.2 Error-Coded FFHSS MFSK Signals -- 11.10 Pulsed Jamming of FFHSS Systems -- 11.11 Concluding Remarks -- References -- Chapter 12 Electronic Warfare and Slow Frequency Hopping Systems -- 12.1 Introduction -- 12.2 BBN Jamming of SFHSS Systems -- 12.2.1 Uncoded -- 12.2.2 Error Coded -- 12.3 PBN Jamming of SFHSS Systems -- 12.3.1 Uncoded SFHSS MFSK Systems -- 12.3.2 Error-Coded SFHSS MFSK Systems -- 12.4 Multitone Jamming of SFHSS Systems -- 12.4.1 Uncoded SFHSS MFSK Systems -- 12.4.2 Error-Coded SFHSS MFSK Signals -- 12.5 Follower Jamming of SFHSS Systems.
12.5.1 Noise Jamming.
Abstract:
This newly revised and greatly expanded edition of the popular Artech House book, Modern Communications Jamming Principles and Techniques, provides an up-to-date, exhaustive treatment of the techniques and methods available to create countermeasures against anti-jam, over-the-air communications. The Second Edition features a wealth of new material on urban warfare, including a computer simulation of EW architecture alternatives for land-based forces based on urban constraints. The new edition also includes an expanded section on time-hopped spread spectrum communications, more details on modern communication system technologies such as CDMA and OFDM, and an in-depth discussion on sources of urban noise.This practical resource is focused on showing you how to design and build jammers specifically targeted at spread spectrum, anti-jam communications. Moreover, you find assistance in evaluating the expected performance of jamming systems against modern communications systems, and discover the best waveform to use to counter communication systems designed to be effective in jamming environments.While mathematical derivations in general are avoided, the book presents error rate performance equations for most modern digital anti-jam communication systems. Written with the professional engineer in mind, this cutting-edge book also serves as an excellent reference for technical personnel new to the communication electronic warfare field due to the inclusion of easy-to-understand introductory material. This resource is packed with over 580 equations and more than 320 illustrations, including graphical examples that allow you to estimate general jammer performance at a glance.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View