Cover image for Protein and Peptide Mass Spectrometry in Drug Discovery.
Protein and Peptide Mass Spectrometry in Drug Discovery.
Title:
Protein and Peptide Mass Spectrometry in Drug Discovery.
Author:
Gross, Michael L.
ISBN:
9781118116531
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (496 pages)
Series:
Wiley Handbooks in Survey Methodology ; v.567

Wiley Handbooks in Survey Methodology
Contents:
Protein and Peptide Mass Spectrometry in Drug Discovery -- CONTENTS -- PREFACE -- CONTRIBUTORS -- PART I: METHODOLOGY -- 1 Ionization Methods in Protein Mass Spectrometry -- 1.1 History of the Development of Protein Mass Spectrometry -- 1.2 Laser-Based Ionization Methods for Proteins -- 1.2.1 Matrix-Assisted Laser Desorption/Ionization (MALDI) -- 1.2.2 Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization (AP-MALDI) -- 1.2.3 Surface-Enhanced Laser Desorption/Ionization (SELDI) -- 1.2.4 Nanostructure-Initiator Mass Spectrometry (NIMS) -- 1.3 Spray-Based Ionization Methods for Proteins -- 1.3.1 Electrospray Ionization (ESI) -- 1.3.2 Sonic Spray Ionization (SSI) -- 1.3.3 Electrosonic Spray Ionization (ESSI) -- 1.4 Ambient Ionization Methods -- 1.4.1 Desorption Electrospray Ionization (DESI) -- 1.4.2 Fused-Droplet Electrospray Ionization (FD-ESI) -- 1.4.3 Electrospray-Assisted Laser Desorption Ionization (ELDI) -- 1.4.4 Matrix-Assisted Laser Desorption Electrospray Ionization (MALDESI) -- 1.5 Conclusions -- Acknowledgments -- References -- 2 Ion Activation and Mass Analysis in Protein Mass Spectrometry -- 2.1 Introduction -- 2.1.1 Mass Accuracy -- 2.1.2 Mass Resolving Power -- 2.1.3 Mass Range -- 2.1.4 Scan Speed -- 2.1.5 Tandem MS Analysis -- 2.2 Ion Activation and Tandem MS Analysis -- 2.2.1 Introduction: Fragmentation in Protein MS -- 2.2.2 Collisional Activation Methods -- 2.2.3 Photodissociation -- 2.2.4 Electron-Induced Dissociation -- 2.2.5 Other Radical-Induced Fragmentation Methods -- 2.3 Mass Analyzers -- 2.3.1 Time-of-Flight Mass Analyzer -- 2.3.2 Quadrupole Mass Analyzer and Quadrupole Ion Trap -- 2.3.3 Fourier-Transform Ion Cyclotron Resonance Mass Spectrometer -- 2.3.4 Orbitrap -- 2.3.5 Ion-Mobility Instruments -- References -- 3 Target Proteins: Bottom-up and Top-down Proteomics.

3.1 Mass Spectral Approaches to Targeted Protein Identification -- 3.2 Bottom-up Proteomics -- 3.2.1 Peptide Mass Fingerprinting -- 3.2.2 Bottom-up Proteomics Using Tandem MS: GeLC-MS/MS and Shotgun Digests -- 3.2.3 GeLC-MS/MS -- 3.2.4 Shotgun Digest -- 3.3 Top-down Approaches -- 3.4 Next-Generation Approaches -- References -- 4 Quantitative Proteomics by Mass Spectrometry -- 4.1 Introduction -- 4.2 In-Cell Labeling -- 4.2.1 15N Metabolic Labeling -- 4.2.2 Stable Isotope Labeling by Amino Acid (SILAC) -- 4.3 Quantitation via Isotopic Labeling of Proteins -- 4.3.1 2D PAGE-Based Quantitation -- 4.3.2 Proteolytic Labeling Using 18O Water -- 4.3.3 Quantitative Labeling by Chemical Tagging -- 4.4 Quantitation via Isotopic Labeling on Peptides -- 4.4.1 ICAT -- 4.4.2 iTRAQ -- 4.4.3 SoPIL -- 4.4.4 Absolute Quantitation -- 4.5 Label-Free Quantitation -- 4.6 Conclusions -- Acknowledgment -- References -- 5 Comparative Proteomics by Direct Tissue Analysis Using Imaging Mass Spectrometry -- 5.1 Introduction -- 5.2 Conventional Comparative Proteomics -- 5.3 Comparative Proteomics Using Imaging MS -- 5.3.1 Biomarker Discovery: Breast Cancer -- 5.3.2 Biomarker Discovery: Toxicity -- 5.3.3 Correlating Drug and Protein Distributions -- 5.4 Conclusions -- Acknowledgments -- References -- 6 Peptide and Protein Analysis Using Ion Mobility-Mass Spectrometry -- 6.1 Ion Mobility-Mass Spectrometry: Instrumentation and Separation Selectivity -- 6.1.1 Instrumentation -- 6.1.2 Separation Selectivity in Bioanalyses -- 6.2 Characterizing and Interpreting Peptide and Protein Structures -- 6.2.1 The Motion of Ions within Neutral Gases -- 6.2.2 Considerations for Calculating Collision Cross Sections -- 6.2.3 Computational Approaches for Interpretation of Structure -- 6.3 Applications of IM-MS to Peptide and Protein Characterizations.

6.3.1 Fundamental Studies of Peptide and Protein Ion Structures -- 6.3.2 Studies in Structural Biology-Protein Complex Characterization -- 6.4 Future Directions -- 6.4.1 Applications -- 6.4.2 Instrumentation -- Acknowledgments -- References -- 7 Chemical Footprinting for Determining Protein Properties and Interactions -- 7.1 Introduction to Hydrogen-Deuterium Exchange -- 7.1.1 Fundamentals of Hydrogen-Deuterium Amide Exchange in Proteins -- 7.1.2 EX1 and EX2 Rates of HDX -- 7.2 Experimental Procedures -- 7.2.1 Global Hydrogen-Deuterium Exchange -- 7.2.2 HDX at the Peptide Level -- 7.3 Mass Spectrometry-Based HDX in Practice -- 7.3.1 Protein-Ligand Interactions by Automated HDX -- 7.3.2 Solvent Accessibility by HDX and MALDI-TOF Mass Spectrometry -- 7.3.3 High-Throughput Screening of Protein Ligands by SUPREX -- 7.3.4 Functional Labeling and Multiple Proteases -- 7.3.5 PLIMSTEX: Application in Protein-DNA Interactions -- 7.3.6 HDX and Tandem Mass Spectrometry Analysis -- 7.3.7 Optimizing HDX with High Pressure -- 7.4 Protein Footprinting via Free-Radical Oxidation -- 7.4.1 Fenton Chemistry Oxidation -- 7.4.2 Radiolytic Generation of Hydroxyl Radicals -- 7.4.3 Fast Photochemical Oxidation of Proteins (FPOP) -- 7.4.4 SPROX: Stability of Proteins from Rates of Oxidation -- 7.5 Chemical Crosslinking -- 7.5.1 Drawbacks of Crosslinking -- 7.6 Selective and Irreversible Chemical Modification -- 7.6.1 Acetylation of Lysine -- 7.6.2 Thiol Derivatization of Cysteines -- 7.6.3 Footprinting FMO Protein in Photosynthetic Bacteria -- 7.6.4 Potential Pitfalls -- 7.7 Conclusion -- References -- 8 Microwave Technology to Accelerate Protein Analysis -- 8.1 Introduction -- 8.2 Microwave Technology -- 8.2.1 Application of Microwave Iirradiation to Akabori Reaction -- 8.2.2 Protein Characterization by Microwave Irradiation and MS.

8.2.3 Temperature and Microwave Irradiation Effects on the Enzyme in Protein Digestion -- 8.2.4 Use of Microwave Digestion of Proteins from SDS-PAGE Gels -- 8.2.5 Extraction of Intact Proteins from SDS-PAGE Using Microwave Irradiation -- 8.2.6 Application of Microwave-Assisted Proteolysis Using Trypsin-Immobilized Magnetic Silica Microspheres -- 8.2.7 Acid Hydrolysis of Proteins with Microwave Irradiation -- 8.2.8 Do Protein Denature During Microwave Irradiation? -- 8.3 Summary -- Acknowledgments -- References -- 9 Bioinformatics and Database Searching -- 9.1 Overview -- 9.2 Introduction to Tandem Mass Spectrometry -- 9.2.1 Protein Sequencing -- 9.2.2 Peptide Fragmentation -- 9.3 Overview of Peptide Identification with Database Searching -- 9.4 MyriMatch-IDPicker Protein Identification Pipeline -- 9.4.1 Raw Data File Formats -- 9.4.2 Protein Sequence Databases -- 9.4.3 MyriMatch Database Search Engine -- 9.4.4 Peptide Identification Reporting -- 9.4.5 Post-processing of Search Results Using IDpicker -- 9.5 Results of a Shotgun Proteomics Study -- 9.6 Improvements to MyriMatch Database Search Engine -- 9.6.1 Parallel Processing -- 9.6.2 Protein Modification Analysis -- 9.7 Applications of MyriMatch-IDPicker Pipeline -- 9.7.1 Characterizing Protein-Protein Interactions -- 9.7.2 Characterizing Yeast Proteome on Diverse Instrument Platforms -- 9.7.3 Characterizing DNA-Protein Crosslinks -- 9.8 Conclusions -- Acknowledgments -- References -- PART II: Applications -- 10 Mass Spectrometry-Based Screening and Characterization of Protein-Ligand Complexes in Drug Discovery -- 10.1 Introduction -- 10.2 Affinity Selection Mass Spectrometry (AS-MS) -- 10.2.1 Direct Detection of Noncovalent Protein-Ligand Complexes -- 10.2.2 Indirect Detection of Noncovalent Protein-Ligand Complexes -- 10.3 Solution-Based AS-MS as Screening Technologies.

10.3.1 Automated Ligand Identification System (ALIS) -- 10.3.2 SpeedScreen -- 10.3.3 Ultracentrification Coupled to Mass Spectrometry -- 10.3.4 Gel Filtration-MS Platform -- 10.3.5 Frontal Affinity Chromatography-Mass Spectrometry (FAC-MS) -- 10.3.6 Indirect Detection AS-MS -- 10.3.7 Emerging Technology -- 10.4 Gas-Phase Interactions -- 10.4.1 Ion-Mobility Mass Spectrometry (IMS) -- 10.4.2 Hydrogen-Deuterium Exchange (H/DX) (Including SUPREX and PLIMSTEX) -- 10.4.3 Crosslinking (Including Inhibition of Complex Formation) -- 10.5 Enzyme Activity Assays Using MS for Screening or Confirming Drug Candidates -- 10.5.1 MS to Measure Substrate Turnover -- 10.5.2 Multiple Component Measurements -- 10.5.3 Continuous Flow Screening -- 10.5.4 Immobilized Enzyme Reactor (IMER) -- 10.5.5 Application of MALDI to High-Throughput Enzyme Assays -- 10.5.6 Ratiometric Assays Using MALDI -- 10.5.7 Self-assembled Monolayers for MALDI-MS (SAMDI) -- 10.5.8 Desorption/Ionization Process Off of Porous Silicon (DIOS) and Carbon Nanotubes -- 10.5.9 Overcoming Low Serial Throughput by Rapid Chromatography -- 10.5.10 MALDI-Triple Quadrupole Mass Spectrometry (MALDI-3Q) -- 10.6 Conclusions and Future Directions -- References -- 11 Utilization of Mass Spectrometry for the Structural Characterization of Biopharmaceutical Protein Products -- 11.1 Introduction -- 11.2 MS-Based Approach for the Characterization of Recombinant Therapeutic Proteins -- 11.3 Cell Culture Development -- 11.4 Purification Development -- 11.4.1 Identification of a Pyruvic Acid Modification Covalently Linked at the N-Terminus of a Recombinant IgG4 Fc Fusion Protein -- 11.4.2 Identification of Hinge Region Cleavage in an IgG1 Monoclonal Antibody with Two N-Linked Glycosylation Sites -- 11.5 Formulation Development -- 11.6 Analytical Method Development.

11.6.1 Utilization of Partial Reduction and LC-MS to Distinguish an IgG4 Monoclonal Antibody Charge Variants That Co-elute in Cation Exchange HPLC.
Abstract:
The book that highlights mass spectrometry and its application in characterizing proteins and peptides in drug discovery An instrumental analytical method for quantifying the mass and characterization of various samples from small molecules to large proteins, mass spectrometry (MS) has become one of the most widely used techniques for studying proteins and peptides over the last decade. Bringing together the work of experts in academia and industry, Protein and Peptide Mass Spectrometry in Drug Discovery highlights current analytical approaches, industry practices, and modern strategies for the characterization of both peptides and proteins in drug discovery. Illustrating the critical role MS technology plays in characterizing target proteins and protein products, the methods used, ion mobility, and the use of microwave radiation to speed proteolysis, the book also covers important emerging applications for neuroproteomics and antigenic peptides. Placing an emphasis on the pharmaceutical industry, the book stresses practice and applications, presenting real-world examples covering the most recent advances in mass spectrometry, and providing an invaluable resource for pharmaceutical scientists in industry and academia, analytical and bioanalytical chemists, and researchers in protein science and proteomics.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: