
Organic Thin Film Transistor Integration : A Hybrid Approach.
Title:
Organic Thin Film Transistor Integration : A Hybrid Approach.
Author:
Li, Flora.
ISBN:
9783527634460
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (272 pages)
Contents:
Organic Thin Film Transistor Integration -- Contents -- Preface -- Glossary -- 1 Introduction -- 1.1 Organic Electronics: History and Market Opportunities -- 1.1.1 Large-Area Displays -- 1.1.2 Rollable Displays -- 1.1.3 Radio Frequency Identification (RFID) Tag -- 1.1.4 Technological Challenges -- 1.1.4.1 Device Performance -- 1.1.4.2 Device Manufacture -- 1.1.5 Scope and Organization -- References -- 2 Organic Thin Film Transistor (OTFT) Overview -- 2.1 Organic Semiconductor Overview -- 2.1.1 Basic Properties -- 2.1.2 Charge Transport -- 2.1.3 Microstructure and Molecular Alignment -- 2.1.4 Material Development and Classifications -- 2.1.4.1 Small Molecules -- 2.1.4.2 Polymers -- 2.1.4.3 n-Type Semiconductors -- 2.1.5 Sensitivity to Environmental Influences -- 2.2 OTFT Operation and Characteristics -- 2.2.1 OTFT Parameter Extraction -- 2.2.2 Contact Resistance Extraction -- 2.2.3 Desirable OTFT Characteristics -- 2.3 OTFT Device Architecture -- 2.3.1 Top-Contact and Bottom-Contact OTFTs -- 2.3.2 Top-Gate, Bottom-Gate, and Dual-Gate OTFTs -- 2.4 OTFT Device Material Selection -- 2.4.1 Organic Semiconductor -- 2.4.2 Gate Dielectric -- 2.4.3 Electrodes/Contacts -- 2.4.4 Substrate -- 2.4.5 Encapsulation Strategies -- 2.5 Summary -- References -- 3 OTFT Integration Strategies -- 3.1 Technological Challenge in OTFT Integration -- 3.2 Overview of Processing and Fabrication Techniques -- 3.2.1 Deposition Methods for Organic Semiconductors -- 3.2.1.1 Vacuum Evaporation -- 3.2.1.2 Solution-Processed Deposition -- 3.2.2 Patterning by Shadow Mask -- 3.2.3 Patterning by Photolithography -- 3.2.3.1 Photolithography Basics -- 3.2.3.2 Photolithography Considerations for OTFTs -- 3.2.4 Patterning by Inkjet Printing -- 3.2.4.1 Inkjet Printing of OTFTs -- 3.2.4.2 Improved Resolution by Surface-Energy Assisted Inkjet Printing.
3.2.4.3 Printing Peripheral Circuit: Vias and Interconnects -- 3.2.5 Microcontact Printing -- 3.2.6 Other Deposition Methods -- 3.3 OTFT Fabrication Schemes -- 3.3.1 Basic One-Mask Processing Scheme for Bottom-Gate OTFT -- 3.3.2 Photolithography Scheme for Fully-Patterned and Fully-Encapsulated Bottom-Gate OTFT -- 3.3.2.1 Directly Patterned OTFTs -- 3.3.2.2 Indirectly Patterned OTFTs -- 3.3.3 Hybrid Photolithography-Inkjet Printing Scheme for Fully-Patterned Bottom-Gate OTFT -- 3.3.4 Photolithography Scheme for Top-Gate and Dual-Gate OTFTs -- 3.3.4.1 Top-Gate OTFT -- 3.3.4.2 Dual-Gate OTFT -- 3.3.4.3 Analysis -- 3.3.5 Fabrication Scheme Comparisons -- 3.4 Summary and Contributions -- References -- 4 Gate Dielectrics by Plasma Enhanced Chemical Vapor Deposition (PECVD) -- 4.1 Overview of Gate Dielectrics -- 4.1.1 Organic Dielectrics -- 4.1.2 Inorganic Dielectrics -- 4.2 Experimental Details and Characterization Methods -- 4.2.1 Deposition Conditions of PECVD Silicon Nitride (SiNx) -- 4.2.2 Thin Film Characterization Methods -- 4.2.2.1 Fourier Transform Infrared Spectroscopy (FTIR) -- 4.2.2.2 Ellipsometry -- 4.2.2.3 X-Ray Photoelectron Spectroscopy (XPS) -- 4.2.2.4 Atomic Force Microscopy (AFM) -- 4.2.2.5 Contact Angle Analysis -- 4.3 Material Characterization of PECVD SiNx Films -- 4.3.1 Bulk/Structural Characterization -- 4.3.1.1 FTIR Spectroscopy -- 4.3.1.2 Refractive Index -- 4.3.1.3 [N]/[Si] Ratio -- 4.3.2 Surface Characterization -- 4.3.2.1 Contact Angle -- 4.3.2.2 Surface Morphology and Roughness -- 4.3.2.3 Chemical Composition -- 4.3.3 Electrical Characterization -- 4.3.3.1 I-V Measurements -- 4.3.3.2 C-V Measurements -- 4.3.4 Summary -- 4.4 Electrical Characterization of OTFTs with PECVD Gate Dielectric -- 4.4.1 300ºC SiNx Gate Dielectrics -- 4.4.2 150ºC SiNx Gate Dielectrics -- 4.4.3 Stacked SiNx Gate Dielectrics.
4.4.4 200ºC SiOx Gate Dielectrics -- 4.4.5 OTFTs on Plastic Substrates -- 4.5 Summary and Contributions -- References -- 5 Dielectric Interface Engineering -- 5.1 Background -- 5.1.1 Self Assembled Monolayer (SAM) -- 5.1.2 Oxygen Plasma Treatment -- 5.1.2.1 Basics of Plasma Processing (Etching) -- 5.2 Experimental Details -- 5.3 Impact of Dielectric Surface Treatments -- 5.4.1 Electrical Characterization -- 5.4.1.1 Impact of Exposure Duration -- 5.4.1.2 Impact of Exposure Power -- 5.4.2 Interface Characterization -- 5.4.2.1 Contact Angle -- 5.4.2.2 Surface Roughness -- 5.4.2.3 Chemical Composition -- 5.4.2.4 XPS Depth Profile Analysis -- 5.4.3 Analysis and Discussion -- 5.3.1 Electrical Characterization -- 5.3.2 Interface Characterization -- 5.3.2.1 Contact Angle -- 5.3.2.2 Surface Roughness -- 5.3.2.3 Chemical Composition -- 5.3.3 Analysis -- 5.4 Impact of Oxygen Plasma Exposure Conditions -- 5.5 Summary and Contributions -- References -- 6 Contact Interface Engineering -- 6.1 Background -- 6.1.1 Charge Injection -- 6.1.2 Alkanethiol SAM on Metals -- 6.2 Experimental Details -- 6.3 Impact of Contact Surface Treatment by Thiol SAM -- 6.3.1 Electrical Characterization -- 6.3.2 Interface Characterization -- 6.3.2.1 Contact Angle -- 6.3.2.2 Surface Roughness -- 6.3.2.3 Chemical Composition -- 6.3.3 Analysis -- 6.4 Impact of Execution Sequence of Surface Treatment -- 6.4.1 Electrical Characterization -- 6.4.2 Interface Characterization -- 6.4.2.1 Contact Angle -- 6.4.2.2 Surface Roughness -- 6.4.2.3 Chemical Composition -- 6.5 Summary and Contributions -- References -- Further Reading -- 7 OTFT Circuits and Systems -- 7.1 OTFT Requirements for Circuit Applications -- 7.1.1 Speed -- 7.1.2 Leakage -- 7.1.3 Current Drive Capacity -- 7.1.4 Stability -- 7.2 Applications -- 7.2.1 Displays -- 7.2.2 RFID Tags -- 7.3 Circuit Demonstration.
7.3.1 Fabrication Schemes -- 7.3.2 Inverters -- 7.3.3 Current Mirrors -- 7.3.4 Ring Oscillators -- 7.3.5 Display Pixel Circuits -- 7.3.5.1 Conventional 2-TFT Pixel Circuit -- 7.3.5.2 Compensating 2-TFT Pixel Circuit -- 7.3.5.3 4-TFT Current Mirror Pixel Circuit -- 7.4 Summary, Contributions, and Outlook -- 7.4.1 Active-Matrix Backplane Integration -- 7.4.2 Back-End Process Integration: Bonding and Packaging -- References -- Further Reading -- 8 Outlook and Future Challenges -- 8.1 Device Performance -- 8.2 Device Manufacture -- 8.3 Device Integration -- References -- Index.
Abstract:
Research on organic electronics (or plastic electronics) is driven by the need to create low-cost electronic devices that are lightweight, mechanically robust and structurally flexible. With the remarkable improvement in the performance of organic electronic materials during the past decade, organic electronics now appeal to innovative, practical, and broad-based applications requiring large-area coverage, lightweight and mechanical flexibility, which range from large-area and flexible displays to sensors, images, electronic identification and security tracking devices. This book presents a comprehensive investigation of the production and application of a variety of polymer based transistor devices and circuits. It begins with a detailed overview of Organic Thin Film Transistors (OTFTs) and discusses the various possible fabrication methods reported so far. This is followed by two major sections on the choice, optimization and implementation of the gate dielectric material. Details of the effects of processing on the efficiency of the contacts are then provided. The book concludes with a chapter on the integration of such devices to produce a variety of OTFT based circuits and systems. From the contents: Introduction Organic Thin Film Transistors (OTFT): Overview OTFT Integration Strategies Gate Dielectric by Plasma Enhanced Chemical Vapor Deposition (PECVD) Dielectric Interface Engineering Contact Interface Engineering OTFT Circuits and Systems Outlook and Future Challenges.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View