Cover image for Indoor Radio Planning : A Practical Guide for GSM, DCS, UMTS, HSPA and LTE.
Indoor Radio Planning : A Practical Guide for GSM, DCS, UMTS, HSPA and LTE.
Title:
Indoor Radio Planning : A Practical Guide for GSM, DCS, UMTS, HSPA and LTE.
Author:
Tolstrup, Morten.
ISBN:
9781119973232
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (482 pages)
Contents:
INDOOR RADIO PLANNING: A Practical Guide for GSM, DCS, UMTS, HSPA and LTE -- Contents -- Foreword by Professor Simon Saunders -- Preface to the Second Edition -- This is Still Not a Book for Scientists! -- The Practical Approach -- Keep the Originals! -- Preface to the First Edition -- This is Not a Book for Scientists -- The Practical Approach -- Acknowledgments -- Second Edition -- First Edition -- 1 Introduction -- 2 Overview of Cellular Systems -- 2.1 Mobile Telephony -- 2.1.1 Cellular Systems -- 2.1.2 Radio Transmission in General -- 2.1.3 The Cellular Concept -- 2.1.4 Digital Cellular Systems -- 2.2 Introduction to GSM -- 2.2.1 GSM -- 2.2.2 GSM Radio Features -- 2.2.3 Mobility Management in GSM -- 2.2.4 GSM Signaling -- 2.2.5 GSM Network Architecture -- 2.3 Universal Mobile Telecommunication System -- 2.3.1 The Most Important UMTS Radio Design Parameters -- 2.3.2 The UMTS Radio Features -- 2.3.3 UMTS Noise Control -- 2.3.4 UMTS Handovers -- 2.3.5 UMTS Power Control -- 2.3.6 UMTS and Multipath Propagation -- 2.3.7 UMTS Signaling -- 2.3.8 The UMTS Network Elements -- 2.4 Introduction to HSPA -- 2.4.1 Introduction -- 2.4.2 Wi-Fi -- 2.4.3 Introduction to HSDPA -- 2.4.4 Indoor HSPA Coverage -- 2.4.5 Indoor HSPA Planning for Maximum Performance -- 2.4.6 HSDPA Coverage from the Macro Network -- 2.4.7 Passive DAS and HSPA -- 2.4.8 Short Introduction to HSPA+ -- 2.4.9 Conclusion -- 2.5 Modulation -- 2.5.1 Shannon's Formula -- 2.5.2 BPSK -- 2.5.3 QPSK - Quadrature Phase Shift Keying -- 2.5.4 Higher Order Modulation 16-64QAM -- 2.5.5 EVM Error Vector Magnitude -- 2.5.6 Adaptive Modulation, Planning for Highest Data Speed -- 2.6 Advanced Antenna Systems for HSPA+ and LTE -- 2.6.1 SISO/MIMO Systems -- 2.6.2 SISO, Single Input Single Output -- 2.6.3 SIMO, Single Input Multiple Output -- 2.6.4 MISO, Multiple Inputs Single Output.

2.6.5 MIMO, Multiple Inputs Multiple Outputs -- 2.6.6 Planning for Optimum Data Speeds Using MIMO -- 2.7 Short Introduction to LTE -- 2.7.1 Motivation behind LTE and E-UTRAN -- 2.7.2 Key Features of LTE E-UTRAN -- 2.7.3 System Architecture Evolution - SAE -- 2.7.4 EPS - Evolved Packet System -- 2.7.5 Evolved Packet Core Network - EPC -- 2.7.6 LTE Reference Points/Interfaces -- 2.7.7 The LTE RF Channel Bandwidth -- 2.7.8 OFDM - Orthogonal Frequency Division Multiplexing -- 2.7.9 OFDMA - Orthogonal Frequency Division Multiple Access -- 2.7.10 SC-FDMA - Single Carrier Frequency Division Multiple Access -- 2.7.11 LTE Slot Structure -- 2.7.12 User Scheduling -- 2.7.13 Downlink Reference Signals -- 2.7.14 The LTE Channel -- 2.7.15 LTE Communication and Control Channels -- 2.7.16 Radio Recourse Management in LTE -- 3 Indoor Radio Planning -- 3.1 Why is In-building Coverage Important? -- 3.1.1 Commercial and Technical Evaluation -- 3.1.2 The Main Part of the Mobile Traffic is Indoors -- 3.1.3 Some 70-80% of Mobile Traffic is Inside Buildings -- 3.1.4 Indoor Solutions Can Make a Great Business Case -- 3.1.5 Business Evaluation -- 3.1.6 Coverage Levels/Cost Level -- 3.1.7 Evaluate the Value of the Proposed Solution -- 3.2 Indoor Coverage from the Macro Layer -- 3.2.1 More Revenue with Indoor Solutions -- 3.2.2 The Problem Reaching Indoor Mobile Users -- 3.3 The Indoor UMTS/HSPA Challenge -- 3.3.1 UMTS Orthogonality Degradation -- 3.3.2 Power Load per User -- 3.3.3 Interference Control in the Building -- 3.3.4 The Soft Handover Load -- 3.3.5 UMTS/HSPA Indoor Coverage Conclusion -- 3.4 Common UMTS Rollout Mistakes -- 3.4.1 The Macro Mistake -- 3.4.2 Do Not Apply GSM Strategies -- 3.4.3 The Correct Way to Plan UMTS/HSPA Indoor Coverage -- 3.5 The Basics of Indoor RF Planning -- 3.5.1 Isolation is the Key -- 3.5.2 Tinted Windows Will Help Isolation.

3.5.3 The 'High-rise Problem' -- 3.5.4 Radio Service Quality -- 3.5.5 Indoor RF Design Levels -- 3.5.6 The Zone Planning Concept -- 4 Distributed Antenna Systems -- 4.1 What Type of Distributed Antenna System is Best? -- 4.1.1 Passive or Active DAS -- 4.1.2 Learn to Use all the Indoor Tools -- 4.1.3 Combine the Tools -- 4.2 Passive Components -- 4.2.1 General -- 4.2.2 Coax Cable -- 4.2.3 Splitters -- 4.2.4 Taps/Uneven Splitters -- 4.2.5 Attenuators -- 4.2.6 Dummy Loads or Terminators -- 4.2.7 Circulators -- 4.2.8 A 3 dB Coupler (90º Hybrid) -- 4.2.9 Power Load on Passive Components -- 4.2.10 Filters -- 4.3 The Passive DAS -- 4.3.1 Planning the Passive DAS -- 4.3.2 Main Points About Passive DAS -- 4.3.3 Applications for Passive DAS -- 4.4 Active DAS -- 4.4.1 Easy to Plan -- 4.4.2 Pure Active DAS for Large Buildings -- 4.4.3 Pure Active DAS for Small to Medium-size Buildings -- 4.4.4 Active Fiber DAS -- 4.5 Hybrid Active DAS Solutions -- 4.5.1 Data Performance on the Uplink -- 4.5.2 DL Antenna Power -- 4.5.3 Antenna Supervision -- 4.5.4 Installation Challenges -- 4.5.5 The Elements of the Hybrid Active DAS -- 4.6 Other Hybrid DAS Solutions -- 4.6.1 In-line BDA Solution -- 4.6.2 Combining Passive and Active Indoor DAS -- 4.6.3 Combining Indoor and Outdoor Coverage -- 4.7 Indoor DAS for MIMO Applications -- 4.7.1 Calculating the Ideal MIMO Antenna Distance Separation for Indoor DAS -- 4.7.2 Make Both MIMO Antennas 'Visible' for the Users -- 4.7.3 Passive DAS and MIMO -- 4.7.4 Pure Active DAS for MIMO -- 4.7.5 Hybrid DAS and MIMO -- 4.7.6 Upgrading Existing DAS to MIMO -- 4.8 Using Repeaters for Indoor DAS Coverage -- 4.8.1 Basic Repeater Terms -- 4.8.2 Repeater Types -- 4.8.3 Repeater Considerations in General -- 4.9 Repeaters for Rail Solutions -- 4.9.1 Repeater Principle on a Train -- 4.9.2 Onboard DAS Solutions.

4.9.3 Repeater Features for Mobile Rail Deployment -- 4.9.4 Practical Concerns with Repeaters on Rail -- 4.10 Designing with Pico and Femtocells -- 4.10.1 What is a Femtocell? -- 4.10.2 Types of Femtocells -- 4.10.3 The Pico/Femtocell Principle -- 4.10.4 Typical Pico Cell Design -- 4.10.5 Extending Pico Cell Coverage with Active DAS -- 4.10.6 Combining Pico Cells into the Same DAS, only GSM/DCS -- 4.10.7 Cost Savings When Combining Capacity of GSM Pico Cells -- 4.11 Active DAS Data -- 4.11.1 Gain and Delay -- 4.11.2 Power Per Carrier -- 4.11.3 Bandwidth, Ripple -- 4.11.4 The 1 dB Compression Point -- 4.11.5 IP3 Third-order Intercept Point -- 4.11.6 Harmonic Distortion, Inter-modulation -- 4.11.7 Spurious Emissions -- 4.11.8 Noise Figure -- 4.11.9 MTBF -- 4.11.10 Dynamic Range and Near-far Effect -- 4.12 Electromagnetic Radiation, EMR -- 4.12.1 ICNIRP EMR Guidelines -- 4.12.2 Mobiles are the Strongest Source of EMR -- 4.12.3 Indoor DAS will Provide Lower EMR Levels -- 4.13 Conclusion -- 5 Designing Indoor DAS Solutions -- 5.1 The Indoor Planning Procedure -- 5.1.1 Indoor Planning Process Flow -- 5.1.2 The RF Planning Part of the Process -- 5.1.3 The Site Survey -- 5.1.4 Time Frame for Implementing Indoor DAS -- 5.1.5 Post Implementation -- 5.2 The RF Design Process -- 5.2.1 The Role of the RF Planner -- 5.2.2 RF Measurements -- 5.2.3 The Initial RF Measurements -- 5.2.4 Measurements of Existing Coverage Level -- 5.2.5 RF Survey Measurement -- 5.2.6 Planning the Measurements -- 5.2.7 Post Implementation Measurements -- 5.2.8 Free Space Loss -- 5.2.9 The One Meter Test -- 5.3 Designing the Optimum Indoor Solution -- 5.3.1 Adapt the Design to Reality -- 5.3.2 Learn from the Mistakes of Others -- 5.3.3 Common Mistakes When Designing Indoor Solutions -- 5.3.4 Planning the Antenna Locations -- 5.3.5 The 'Corridor Effect'.

5.3.6 Fire Cells Inside the Building -- 5.3.7 Indoor Antenna Performance -- 5.3.8 The 'Corner Office Problem' -- 5.3.9 Interleaving Antennas In-between Floors -- 5.3.10 Planning for Full Indoor Coverage -- 5.3.11 The Cost of Indoor Design Levels -- 5.4 Indoor Design Strategy -- 5.4.1 Hot-spot Planning Inside Buildings -- 5.4.2 Special Design Considerations -- 5.4.3 The Design Flow -- 5.4.4 Placing the Indoor Antennas -- 5.5 Handover Considerations Inside Buildings -- 5.5.1 Indoor GSM Handover Planning -- 5.5.2 Indoor UMTS Handover Planning -- 5.5.3 Handover Zone Size -- 5.6 Elevator Coverage -- 5.6.1 Elevator Installation Challenges -- 5.6.2 The Most Common Coverage Elevator Solution -- 5.6.3 Antenna Inside the Shaft -- 5.6.4 Repeater in the Lift-car -- 5.6.5 DAS Antenna in the Lift-car -- 5.6.6 Passive Repeaters in Elevators -- 5.6.7 Real-life Example of a Passive Repeater in an Elevator -- 5.6.8 Control the Elevator HO Zone -- 5.6.9 Elevator HO Zone Size -- 5.6.10 Challenges with Elevator Repeaters for Large Shafts -- 5.7 Multioperator Systems -- 5.7.1 Multioperator DAS Solutions Compatibility -- 5.7.2 The Combiner System -- 5.7.3 Inter-modulation Distortion -- 5.7.4 How to Minimize PIM -- 5.7.5 IMD Products -- 5.8 Co-existence Issues for GSM/UMTS -- 5.8.1 Spurious Emissions -- 5.8.2 Combined DAS for GSM900 and UMTS -- 5.8.3 Combined DAS for GSM1800 and UMTS -- 5.9 Co-existence Issues for UMTS/UMTS -- 5.9.1 Adjacent Channel Interference Power Ratio -- 5.9.2 The ACIR Problem with Indoor DAS -- 5.9.3 Solving the ACIR Problem Inside Buildings -- 5.10 Multioperator Requirements -- 5.10.1 Multioperator Agreement -- 5.10.2 Parties Involved in the Indoor Project -- 5.10.3 The Most Important Aspects to Cover in the MOA -- 6 Traffic Dimensioning -- 6.1 Erlang, the Traffic Measurement -- 6.1.1 What is One Erlang? -- 6.1.2 Call Blocking, Grade of Service.

6.1.3 The Erlang B Table.
Abstract:
Why is indoor coverage needed, and how it is best implemented? As the challenge of providing higher data speeds and quality for mobile applications intensifies, ensuring adequate in-building and tunnel coverage and capacity is increasingly important. A unique, single-source reference on the theoretical and practical knowledge behind indoor and tunnel radio planning, Indoor Radio Planning, Second Edition provides an overview of mobile networks systems and coverage solutions with GSM, UMTS, HSPA and LTE cellular systems technologies as a backdrop. All of the available solutions, from basic passive distributed antenna systems (DAS) through to advanced fiber optic systems supporting MIMO and LTE, are discussed in detail to give the reader a good understanding. In addition, there is a section covering multi-operator systems, as this becomes a more and more utilized approach. Systematically moving from the basic considerations through to advanced indoor planning, aspects such as upgrading passive DAS from 2G to 3G, noise analysis, link budgets, traffic calculations and software tools that can be used to help create in-building designs are also covered. Femtocells, outdoor DAS and tunnel radio planning are newly included in this edition. A new version of the bestseller, updated with an introduction to LTE and treatments of modulation principle, DAS systems for MIMO/LTE , designing repeater systems and elevator coverage Addresses the challenge of providing coverage inside train, and high speed rail Outlines the key parameters and metrics for designing DAS for GSM, DCS, UMTS, HSPA & LTE Essential reading for engineering and planning personnel at mobile operators, also giving a sound grounding in indoor radio planning for equipment manufacturers Written by a leading practitioner in the field with more than 20 years of practical experience.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: