
Fiber-Optic Communication Systems.
Title:
Fiber-Optic Communication Systems.
Author:
Agrawal, Govind P.
ISBN:
9780470918517
Personal Author:
Edition:
4th ed.
Physical Description:
1 online resource (630 pages)
Series:
Wiley Series in Microwave and Optical Engineering ; v.222
Wiley Series in Microwave and Optical Engineering
Contents:
Fiber-optic Communication Systems -- Contents -- Preface -- 1 Introduction -- 1.1 Historical Perspective -- 1.1.1 Need for Fiber-Optic Communications -- 1.1.2 Evolution of Lightwave Systems -- 1.2 Basic Concepts -- 1.2.1 Analog and Digital Signals -- 1.2.2 Channel Multiplexing -- 1.2.3 Modulation Formats -- 1.3 Optical Communication Systems -- 1.4 Lightwave System Components -- 1.4.1 Optical Fibers as a Communication Channel -- 1.4.2 Optical Transmitters -- 1.4.3 Optical Receivers -- Problems -- References -- 2 Optical Fibers -- 2.1 Geometrical-Optics Description -- 2.1.1 Step-Index Fibers -- 2.1.2 Graded-Index Fibers -- 2.2 Wave Propagation -- 2.2.1 Maxwell's Equations -- 2.2.2 Fiber Modes -- 2.2.3 Single-Mode Fibers -- 2.3 Dispersion in Single-Mode Fibers -- 2.3.1 Group-Velocity Dispersion -- 2.3.2 Material Dispersion -- 2.3.3 Waveguide Dispersion -- 2.3.4 Higher-Order Dispersion -- 2.3.5 Polarization-Mode Dispersion -- 2.4 Dispersion-Induced Limitations -- 2.4.1 Basic Propagation Equation -- 2.4.2 Chirped Gaussian Pulses -- 2.4.3 Limitations on the Bit Rate -- 2.4.4 Fiber Bandwidth -- 2.5 Fiber Losses -- 2.5.1 Attenuation Coefficient -- 2.5.2 Material Absorption -- 2.5.3 Rayleigh Scattering -- 2.5.4 Waveguide Imperfections -- 2.6 Nonlinear Optical Effects -- 2.6.1 Stimulated Light Scattering -- 2.6.2 Nonlinear Phase Modulation -- 2.6.3 Four-Wave Mixing -- 2.7 Fiber Design and Fabrication -- 2.7.1 Silica Fibers -- 2.7.2 Plastic Optical Fibers -- 2.7.3 Cables and Connectors -- Problems -- References -- 3 Optical Transmitters -- 3.1 Semiconductor Laser Physics -- 3.1.1 Spontaneous and Stimulated Emissions -- 3.1.2 Nonradiative Recombination -- 3.1.3 Optical Gain -- 3.1.4 Feedback and Laser Threshold -- 3.1.5 Longitudinal Modes -- 3.1.6 Laser Structures -- 3.2 Single-Mode Semiconductor Lasers -- 3.2.1 Distributed Feedback Lasers.
3.2.2 Coupled-Cavity Semiconductor Lasers -- 3.2.3 Tunable Semiconductor Lasers -- 3.2.4 Vertical-Cavity Surface-Emitting Lasers -- 3.3 Laser Characteristics -- 3.3.1 CW Characteristics -- 3.3.2 Modulation Bandwidth -- 3.3.3 Relative Intensity Noise -- 3.3.4 Spectral Linewidth -- 3.4 Optical Signal Generation -- 3.4.1 Direct Modulation -- 3.4.2 External Modulation -- 3.5 Light-Emitting Diodes -- 3.5.1 CW Characteristics -- 3.5.2 Modulation Response -- 3.5.3 LED Structures -- 3.6 Transmitter Design -- 3.6.1 Source-Fiber Coupling -- 3.6.2 Driving Circuitry -- 3.6.3 Reliability and Packaging -- Problems -- References -- 4 Optical Receivers -- 4.1 Basic Concepts -- 4.1.1 Responsivity and Quantum Efficiency -- 4.1.2 Rise Time and Bandwidth -- 4.2 Common Photodetectors -- 4.2.1 p-n Photodiodes -- 4.2.2 p-i-n Photodiodes -- 4.2.3 Avalanche Photodiodes -- 4.2.4 MSM Photodetectors -- 4.3 Receiver Design -- 4.3.1 Front End -- 4.3.2 Linear Channel -- 4.3.3 Decision Circuit -- 4.3.4 Integrated Receivers -- 4.4 Receiver Noise -- 4.4.1 Noise Mechanisms -- 4.4.2 p-i-n Receivers -- 4.4.3 APD Receivers -- 4.5 Coherent Detection -- 4.5.1 Local Oscillator -- 4.5.2 Homodyne Detection -- 4.5.3 Heterodyne Detection -- 4.5.4 Signal-to-Noise Ratio -- 4.6 Receiver Sensitivity -- 4.6.1 Bit-Error Rate -- 4.6.2 Minimum Received Power -- 4.6.3 Quantum Limit of Photodetection -- 4.7 Sensitivity Degradation -- 4.7.1 Extinction Ratio -- 4.7.2 Intensity Noise -- 4.7.3 Timing Jitter -- 4.8 Receiver Performance -- Problems -- References -- 5 Lightwave Systems -- 5.1 System Architectures -- 5.1.1 Point-to-Point Links -- 5.1.2 Distribution Networks -- 5.1.3 Local-Area Networks -- 5.2 Design Guidelines -- 5.2.1 Loss-Limited Lightwave Systems -- 5.2.2 Dispersion-Limited Lightwave Systems -- 5.2.3 Power Budget -- 5.2.4 Rise-Time Budget -- 5.3 Long-Haul Systems.
5.3.1 Performance-Limiting Factors -- 5.3.2 Terrestrial Lightwave Systems -- 5.3.3 Undersea Lightwave Systems -- 5.4 Sources of Power Penalty -- 5.4.1 Modal Noise -- 5.4.2 Mode-Partition Noise -- 5.4.3 Reflection Feedback and Noise -- 5.4.4 Dispersive Pulse Broadening -- 5.4.5 Frequency Chirping -- 5.4.6 Eye-Closure Penalty -- 5.5 Forward Error Correction -- 5.5.1 Error-Correcting Codes -- 5.5.2 Coding Gain -- 5.6 Computer-Aided Design -- Problems -- References -- 6 Multichannel Systems -- 6.1 WDM Lightwave Systems -- 6.1.1 High-Capacity Point-to-Point Links -- 6.1.2 Wide-Area and Metro-Area Networks -- 6.1.3 Multiple-Access WDM Networks -- 6.2 WDM Components -- 6.2.1 Tunable Optical Filters -- 6.2.2 Multiplexers and Demultiplexers -- 6.2.3 Add-Drop Multiplexers and Filters -- 6.2.4 Star Couplers -- 6.2.5 Wavelength Routers -- 6.2.6 WDM Transmitters and Receivers -- 6.3 System Performance Issues -- 6.3.1 Heterowavelength Linear Crosstalk -- 6.3.2 Homowavelength Linear Crosstalk -- 6.3.3 Nonlinear Raman Crosstalk -- 6.3.4 Stimulated Brillouin Scattering -- 6.3.5 Cross-Phase Modulation -- 6.3.6 Four-Wave Mixing -- 6.3.7 Other Design Issues -- 6.4 Time-Division Multiplexing -- 6.4.1 Channel Multiplexing -- 6.4.2 Channel Demultiplexing -- 6.4.3 System Performance -- 6.5 Subcarrier Multiplexing -- 6.5.1 Analog and Digital SCM Systems -- 6.5.2 Multiwavelength SCM Systems -- 6.5.3 Orthogonal Frequency-Division multiplexing -- 6.6 Code-Division Multiplexing -- 6.6.1 Time-Domain Encoding -- 6.6.2 Frequency-Domain Encoding -- 6.6.3 Frequency Hopping -- Problems -- References -- 7 Loss Management -- 7.1 Compensation of Fiber Losses -- 7.1.1 Periodic Amplification Scheme -- 7.1.2 Lumped Versus Distributed Amplification -- 7.1.3 Bidirectional Pumping Scheme -- 7.2 Erbium-Doped Fiber Amplifiers -- 7.2.1 Pumping and Gain Spectrum -- 7.2.2 Two-Level Model.
7.2.3 Amplifier Noise -- 7.2.4 Multichannel Amplification -- 7.3 Raman Amplifiers -- 7.3.1 Raman Gain and Bandwidth -- 7.3.2 Raman-Induced Signal Gain -- 7.3.3 Multiple-Pump Raman Amplification -- 7.3.4 Noise Figure of Raman Amplifiers -- 7.4 Optical Signal-To-Noise Ratio -- 7.4.1 Lumped Amplification -- 7.4.2 Distributed Amplification -- 7.5 Electrical Signal-To-Noise Ratio -- 7.5.1 ASE-Induced Current Fluctuations -- 7.5.2 Impact of ASE on SNR -- 7.5.3 Noise Buildup in an Amplifier Chain -- 7.6 Receiver Sensitivity and Q Factor -- 7.6.1 Bit-Error Rate -- 7.6.2 Relation between Q Factor and Optical SNR -- 7.7 Role of Dispersive and Nonlinear Effects -- 7.7.1 Noise Growth through Modulation Instability -- 7.7.2 Noise-Induced Signal Degradation -- 7.7.3 Noise-Induced Energy Fluctuations -- 7.7.4 Noise-Induced Timing Jitter -- 7.8 Periodically Amplified Lightwave Systems -- 7.8.1 Numerical Approach -- 7.8.2 Optimum Launched Power -- Problems -- References -- 8 Dispersion Management -- 8.1 Dispersion Problem and Its Solution -- 8.2 Dispersion-Compensating Fibers -- 8.2.1 Conditions for Dispersion Compensation -- 8.2.2 Dispersion Maps -- 8.2.3 DCF Designs -- 8.3 Fiber Bragg Gratings -- 8.3.1 Constant-Period Gratings -- 8.3.2 Chirped Fiber Gratings -- 8.3.3 Sampled Gratings -- 8.4 Dispersion-Equalizing Filters -- 8.4.1 Gires-Tournois Filters -- 8.4.2 Mach-Zehnder Filters -- 8.4.3 Other All-Pass Filters -- 8.5 Optical Phase Conjugation -- 8.5.1 Principle of Operation -- 8.5.2 Compensation of Self-Phase Modulation -- 8.5.3 Generation of Phase-Conjugated Signal -- 8.6 Channels at High Bit Rates -- 8.6.1 Tunable Dispersion Compensation -- 8.6.2 Higher-Order Dispersion Management -- 8.6.3 PMD Compensation -- 8.7 Electronic Dispersion Compensation -- 8.7.1 Basic Idea behind GVD Precompensation -- 8.7.2 Precompensation at the Transmitter.
8.7.3 Dispersion Compensation at the Receiver -- Problems -- References -- 9 Control of Nonlinear Effects -- 9.1 Impact of Fiber Nonlinearity -- 9.1.1 System Design Issues -- 9.1.2 Semianalytic Approach -- 9.1.3 Soliton and Pseudo-linear Regimes -- 9.2 Solitons in Optical Fibers -- 9.2.1 Properties of Optical Solitons -- 9.2.2 Loss-Managed Solitons -- 9.3 Dispersion-Managed Solitons -- 9.3.1 Dispersion-Decreasing Fibers -- 9.3.2 Periodic Dispersion Maps -- 9.3.3 Design Issues -- 9.3.4 Timing Jitter -- 9.3.5 Control of Timing Jitter -- 9.4 Pseudo-linear Lightwave Systems -- 9.4.1 Origin of Intrachannel Nonlinear Effects -- 9.4.2 Intrachannel Cross-Phase Modulation -- 9.4.3 Intrachannel Four-Wave Mixing -- 9.5 Control of Intrachannel Nonlinear Effects -- 9.5.1 Optimization of Dispersion Maps -- 9.5.2 Phase-Alternation Techniques -- 9.5.3 Polarization Bit Interleaving -- Problems -- References -- 10 Advanced Lightwave Systems -- 10.1 Advanced Modulation Formats -- 10.1.1 Encoding of Optical Signals -- 10.1.2 Amplitude and Phase Modulators -- 10.2 Demodulation Schemes -- 10.2.1 Synchronous Heterodyne Demodulation -- 10.2.2 Asynchronous Heterodyne Demodulation -- 10.2.3 Optical Delay Demodulation -- 10.3 Shot Noise and Bit-Error Rate -- 10.3.1 Synchronous Heterodyne Receivers -- 10.3.2 Asynchronous Heterodyne Receivers -- 10.3.3 Receivers with Delay Demodulation -- 10.4 Sensitivity Degradation Mechanisms -- 10.4.1 Intensity Noise of Lasers -- 10.4.2 Phase Noise of Lasers -- 10.4.3 Signal Polarization Fluctuations -- 10.4.4 Noise Added by Optical Amplifiers -- 10.4.5 Fiber Dispersion -- 10.5 Impact of Nonlinear Effects -- 10.5.1 Nonlinear Phase Noise -- 10.5.2 Effect of Fiber Dispersion -- 10.5.3 Compensation of Nonlinear Phase Noise -- 10.6 Recent Progress -- 10.6.1 Systems with the DBPSK format -- 10.6.2 Systems with the DQPSK format.
10.6.3 QAM and Related formats.
Abstract:
The definitive guide to fiber-optic communicationsystems, now fully up-to-date since the release of the previous edition of this proven bestseller, fiber-optic communication systems (FOCS) have revolutionized the telecommunications industry and, due to advantages over electrical transmission, have largely replaced copper wire communications. Now, the Fourth Edition continues this trusted resource's tradition of providing the most comprehensive FOCS coverage by incorporating the recent advances in the field, emphasizing both the physical understanding and engineering aspects. Featured are two new chapters: one deals with the advanced modulation formats (such as DPSK, QPSK, and QAM) that are increasingly being used for improving spectral efficiency of WDM lightwave systems; the other focuses on new techniques such as all-optical regeneration that are under development and likely to be used in future communication systems. All other chapters have been updated, and material has been restructured to be better suited for a two-semester course on optical communications. Students and researchers alike will benefit from the extensive pedagogical aids, including: Extensive reference lists for each chapter A survey of recent research material for each topic Relevant end-of-chapter practice problems for instructors and students A Solutions Manual available to instructors on request State-of-the-art software on the enclosed CD, which students can use to design point-to-point optical links, as well as additional problems for each chapter Used worldwide as a textbook in many universities, Fiber-Optic Communication Systems is intended primarily for graduate students of fiber-optic communications. It is also a valuable resource for undergraduate courses at the senior level, as well as an indispensable professional reference for
engineers and technicians in the telecommunications industry and scientists working in the fields of fiber optics and optical communications.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View