
Fundamentals of Spatial Data Quality.
Title:
Fundamentals of Spatial Data Quality.
Author:
Devillers, Rodolphe.
ISBN:
9780470394816
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (311 pages)
Series:
Geographical Information Systems Series (ISTE-GIS)
Contents:
Fundamentals of Spatial Data Quality -- Table of Contents -- Foreword -- Introduction -- PART 1. Quality and Uncertainty: Introduction to the Problem -- Chapter 1. Development in the Treatment of Spatial Data Quality -- 1.1. Introduction -- 1.2. In the beginning -- 1.3. Changing the scene -- 1.3.1. Accuracy beyond position -- 1.3.2. Topology and logical consistency -- 1.3.3. Fitness for use -- 1.4. Elements of novelty -- 1.5. References -- Chapter 2. Spatial Data Quality: Concepts -- 2.1. Introduction -- 2.2. Sources and types of errors -- 2.3. Definitions of the concept of quality -- 2.3.1. Internal quality -- 2.3.2. External quality -- 2.4. Conclusion -- 2.5. References -- Chapter 3. Approaches to Uncertainty in Spatial Data -- 3.1. Introduction -- 3.2. The problem of definition -- 3.2.1. Examples of well-defined geographical objects -- 3.2.2. Examples of poorly defined geographical objects -- 3.3. Error -- 3.4. Vagueness -- 3.5. Ambiguity -- 3.5.1. Discord -- 3.5.2. Non-specificity -- 3.6. Data quality -- 3.7. Precision -- 3.8. Conclusion: uncertainty in practice -- 3.9. References -- PART 2. Academic Case Studies: Raster, Chloropleth and Land Use -- Chapter 4. Quality of Raster Data -- 4.1. Introduction -- 4.2. Geometry quality -- 4.2.1. Image reference system and modeling of the viewing geometry -- 4.2.1.1. Image reference system in matrix representation -- 4.2.1.2. Direct and inverse localization -- 4.2.1.3. Geometric transforms of images -- 4.2.1.4. Acquisition models -- 4.2.2. Definitions -- 4.2.2.1. Georeferenced image -- 4.2.2.2. Geocoded image -- 4.2.2.3. Orthorectified image -- 4.2.2.4. Check points -- 4.2.2.5. Tie points -- 4.2.2.6. Localization error -- 4.2.2.7. Mean quadratic error -- 4.2.2.8. Error vector field -- 4.2.2.9. Native projection of a map -- 4.2.3. Some geometry defects -- 4.2.3.1. Absolute localization defect.
4.2.3.2. Global defects of internal geometry -- 4.2.3.3. Local defects of internal geometry -- 4.2.4. Localization control and global models -- 4.2.5. Internal geometry control -- 4.3. Radiometry quality -- 4.3.1. Radiometry quantities -- 4.3.2. Overview of the radiometric defects -- 4.3.2.1. Diffraction and defocalization -- 4.3.2.2. Polarization of the instrument -- 4.3.2.3. Stray light -- 4.3.2.4. Aerial photos -- 4.3.3. Calibration of the radiometric data -- 4.3.3.1. Radiometric calibration -- 4.3.3.2. Spectral calibration -- 4.3.4. Atmospheric correction -- 4.4. References -- Chapter 5. Understanding the Nature and Magnitude of Uncertainty in Geopolitical and Interpretive Choropleth Maps -- 5.1. Introduction -- 5.2. Uncertainty in geopolitical maps -- 5.2.1. Locational uncertainty in geopolitical maps -- 5.2.2. Attribute uncertainty in geopolitical maps -- 5.3. Uncertainty in interpretive maps -- 5.3.1. Construction of interpretive polygonal maps -- 5.3.2. Uncertainty in boundaries of interpretive polygonal maps -- 5.3.3. Uncertainty in attributes of interpretive polygonal maps -- 5.4. Interpretive map case studies -- 5.5. Conclusion -- 5.6. References -- Chapter 6. The Impact of Positional Accuracy on the Computation of Cost Functions -- 6.1. Introduction -- 6.2. Spatial data quality -- 6.2.1. Positional accuracy -- 6.2.2. The meta-model for spatial data quality -- 6.2.3. Error model -- 6.2.4. Error propagation -- 6.2.5. The variance-covariance equation -- 6.3. Application -- 6.3.1. Background -- 6.3.2. Results -- 6.4. Conclusions -- 6.5. References -- Chapter 7. Reasoning Methods for Handling Uncertain Information in Land Cover Mapping -- 7.1. Introduction -- 7.2. Uncertainty -- 7.3. Well-defined objects: error, probability, and Bayes -- 7.4. Poorly-defined objects: spatial extent, vagueness, and fuzzy-set theory.
7.5. Poorly defined specification: ambiguity, discord, non-specificity and expert knowledge -- 7.5.1. Ambiguity -- 7.5.2. Using expert knowledge to reason with uncertainty -- 7.5.3. Formalisms for managing ambiguity -- 7.5.3.1. Discord, experts and Dempster-Shafer theory of evidence -- 7.5.3.2. Non-specificity, experts, and qualitative reasoning formalisms -- 7.6. Conclusion -- 7.7. References -- PART 3. Internal Quality of Vector Data: Production, Evaluation and Documentation -- Chapter 8. Vector Data Quality: A Data Provider's Perspective -- 8.1. Introduction -- 8.2. Providing vector geographical data -- 8.2.1. Data quality and usability -- 8.2.2. Aims of a national mapping agency -- 8.2.3. Vector geographical data -- 8.3. Data quality needs of the end user -- 8.3.1. Users' understanding of their needs -- 8.3.2. Data providers' understanding of user needs -- 8.4. Recognizing quality elements in vector data -- 8.4.1. Lineage -- 8.4.2. Currency -- 8.4.3. Positional accuracy -- 8.4.4. Attribute accuracy -- 8.4.5. Logical consistency -- 8.4.5.1. Connectivity in vector data -- 8.4.6. Completeness -- 8.5. Quality in the capture, storage, and supply of vector data -- 8.5.1. Overview of the data capture to supply process -- 8.5.1.1. Capture specifications -- 8.5.1.2. Quality control of vector data -- 8.5.1.3. Quality assurance of vector data -- 8.5.2. Quality in data capture -- 8.5.2.1. Field capture of vector data -- 8.5.2.2. Photogrammetric capture of vector data -- 8.5.2.3. External sources for vector data -- 8.5.3. Quality in the storage and post-capture processing of vector data -- 8.5.4. Quality in vector data product creation and supply -- 8.6. Communication of vector data quality information to the user -- 8.7. Conclusions and future directions -- 8.8. References.
Chapter 9. Spatial Integrity Constraints: A Tool for Improving the Internal Quality of Spatial Data -- 9.1. Introduction -- 9.2. Existing work -- 9.3. Topological relations and international geomatics standards -- 9.4. Definitions and concepts: the components of integrity constraints -- 9.4.1. Spatial operators -- 9.4.1.1. The extension tangent -- 9.4.1.2. The extension borders -- 9.4.1.3. The extension strict -- 9.4.2. Cardinality associated with predicates -- 9.4.3. Buffer -- 9.5. Documentation and use of integrity constraints -- 9.5.1. Documenting spatial integrity constraints -- 9.5.2. Validation of integrity constraints (inconsistency) -- 9.6. Production and validation of geographic data -- 9.6.1. Validating the spatial integrity of geographic data -- 9.6.2. Available tools -- 9.7. Conclusion -- 9.8. References -- Chapter 10. Quality Components, Standards, and Metadata -- 10.1. Introduction -- 10.2. Concepts of quality -- 10.2.1. Quality reference bases -- 10.2.2. Quality criteria -- 10.2.2.1. Qualitative criterion -- 10.2.2.2. Quantitative criterion -- 10.2.3. Expression of the quality -- 10.2.4. Precision and accuracy -- 10.2.5. Appraisal and use of quality -- 10.2.6. Meta-quality -- 10.3. Detailed description of quality criteria -- 10.3.1. Lineage -- 10.3.2. Positional accuracy or geometric accuracy -- 10.3.3. Attribute accuracy or semantic accuracy -- 10.3.4. Completeness -- 10.3.5. Logical consistency -- 10.3.6. Semantic consistency -- 10.3.7. Timeliness -- 10.3.8. Temporal consistency -- 10.3.9. Quality criteria: difficulties and limitations -- 10.4. Quality and metadata as seen by standards -- 10.4.1. Introduction to standardization -- 10.4.2. Background of geographic information standards -- 10.4.3. Standards relating to metadata and quality -- 10.4.4. Theoretical analysis of ISO/TC 211 standards -- 10.4.4.1. The ISO 19113 standard.
10.4.4.2. The ISO 19114 standard -- 10.4.4.3. The ISO 19115 standard -- 10.4.4.4. ISO 19138 preliminary draft technical specification -- 10.4.5. Standardized implementation of metadata and quality -- 10.4.5.1. Preamble -- 10.4.5.2. The model for exchange by transmission -- 10.4.5.3. Data transfer -- 10.4.5.4. Metadata of geographic objects -- 10.5. Conclusion -- 10.6. References -- PART 4. External Quality: Communication and Usage -- Chapter 11. Spatial Data Quality Assessment and Documentation -- 11.1. Introduction -- 11.1.1. Quality in its context -- 11.1.2. Outline of chapter -- 11.2. Denotation as a radical quality aspect of geographical data -- 11.3. Sources for the fluctuations in denotation -- 11.3.1. The modeling of the world -- 11.3.2. The modeling of operations -- 11.3.3. Realization of the model of operations -- 11.3.4. Realization of the model of the world -- 11.3.5. Synthesis -- 11.4. How to express denotation quality -- 11.4.1. General principles for the assessment of denotation quality -- 11.4.1.1. Comparison -- 11.4.1.2. Measure for measure -- 11.4.1.3. Statistics -- 11.4.1.4. Validity intervals -- 11.4.1.5. Reporting -- 11.4.2. Toward a few measures -- 11.4.3. Geometry measures -- 11.4.3.1. Punctual objects -- 11.4.3.2. Linear objects -- 11.4.3.3. Surface objects -- 11.4.3.4. Topology -- 11.4.4. Time measures -- 11.4.4.1. Dates -- 11.4.4.2. Chronology -- 11.4.5. Value measures -- 11.4.5.1. Semantics -- 11.4.5.2. Semiology -- 11.4.6. Indirect measures -- 11.4.7. Measures on modeling -- 11.5. Conclusion -- 11.6. References -- Chapter 12. Communication and Use of Spatial Data Quality Information in GIS -- 12.1. Introduction -- 12.2. Data quality information management -- 12.3. Communication of data quality information -- 12.3.1. Metadata -- 12.3.2. Data quality visualization -- 12.4. Use of quality information.
12.4.1. Warnings and illogical operators.
Abstract:
This book explains the concept of spatial data quality, a key theory for minimizing the risks of data misuse in a specific decision-making context. Drawing together chapters written by authors who are specialists in their particular field, it provides both the data producer and the data user perspectives on how to evaluate the quality of vector or raster data which are both produced and used. It also covers the key concepts in this field, such as: how to describe the quality of vector or raster data; how to enhance this quality; how to evaluate and document it, using methods such as metadata; how to communicate it to users; and how to relate it with the decision-making process. Also included is a Foreword written by Professor Michael F. Goodchild.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Added Author:
Electronic Access:
Click to View