
Free Energy Computations : A Mathematical Perspective.
Title:
Free Energy Computations : A Mathematical Perspective.
Author:
Lelievre, Tony.
ISBN:
9781848162488
Personal Author:
Physical Description:
1 online resource (471 pages)
Contents:
Contents -- Preface -- 1. Introduction -- 1.1 Computational statistical physics: some landmarks -- 1.1.1 Some orders of magnitude -- 1.1.2 Aims of molecular simulation -- 1.1.2.1 An example: the equation of state of Argon -- 1.2 Microscopic description of physical systems -- 1.2.1 Interactions -- 1.2.1.1 Boundary conditions -- 1.2.1.2 Potential functions -- 1.2.2 Dynamics of isolated systems -- 1.2.2.1 The Hamiltonian dynamics -- 1.2.2.2 Equivalent reformulations -- 1.2.2.3 Properties of the Hamiltonian dynamics -- 1.2.2.4 Numerical integration -- 1.2.3 Thermodynamic ensembles -- 1.2.3.1 The microcanonical ensemble -- 1.2.3.2 The canonical ensemble -- 1.2.3.3 Other thermodynamic ensembles -- 1.3 Free energy and its numerical computation -- 1.3.1 Absolute free energy -- 1.3.1.1 Definition -- 1.3.1.2 Relationship with macroscopic thermodynamics -- 1.3.2 Relative free energies -- 1.3.2.1 Alchemical transitions -- 1.3.2.2 Transitions indexed by a reaction coordinate -- 1.3.2.3 A typical alchemical transition: Widom insertion -- 1.3.2.4 A typical transition indexed by a reaction coordinate: Dimer in a solvent -- 1.3.3 Free energy and metastability -- 1.3.3.1 A simple example of metastable dynamics -- 1.3.3.2 Entropic and energetic barriers -- 1.3.3.3 Free energy biased sampling -- 1.3.4 Computational techniques -- 1.3.4.1 Thermodynamic integration -- 1.3.4.2 Methods based on straightforward sampling -- 1.3.4.3 Nonequilibrium dynamics -- 1.3.4.4 Adaptive dynamics -- 1.4 Summary of the mathematical tools and structure of the book -- 2. Sampling methods -- 2.1 Markov chain methods -- 2.1.1 Some background material on the theory of Markov chains -- 2.1.2 The Metropolis-Hastings algorithm -- 2.1.2.1 Presentation of the method -- 2.1.2.2 Mathematical properties -- 2.1.2.3 Some examples of proposition transition kernels -- 2.1.3 Hybrid Monte-Carlo.
2.1.4 Generalized Metropolis-Hastings variants -- 2.1.4.1 Presentation of the method -- 2.1.4.2 Mathematical properties -- 2.1.4.3 Relationship with the Hybrid Monte-Carlo algorithm -- 2.2 Continuous stochastic dynamics -- 2.2.1 Mathematical background on Markovian continu- ous processes -- 2.2.1.1 Infinitesimal generator of diffusion processes -- 2.2.1.2 Properties of time-homogeneous diffusion processes -- 2.2.2 Overdamped Langevin process -- 2.2.2.1 Detailed balance and ergodicity -- 2.2.2.2 Time discretization and numerical implementation -- 2.2.3 Langevin process -- 2.2.3.1 Detailed balance and ergodicity -- 2.2.3.2 Time discretization and numerical implementation -- 2.2.4 Overdamped limit of the Langevin dynamics -- 2.2.4.1 Limit of the stochastic processes -- 2.2.4.2 Overdamped limit of the numerical schemes -- 2.3 Convergence of sampling methods -- 2.3.1 Sampling errors -- 2.3.1.1 Bias -- 2.3.1.2 Statistical errors -- 2.3.1.3 Practical computation of error bars -- 2.3.2 Rate of convergence for stochastic processes -- 2.3.2.1 Longtime convergence -- 2.3.2.2 A possible quantification of metastability -- 2.3.2.3 Obtaining logarithmic Sobolev inequalities -- 2.4 Methods for alchemical free energy differences -- 2.4.1 Free energy perturbation -- 2.4.1.1 General idea of the method -- 2.4.1.2 Expansions using the distribution of energy differences -- 2.4.1.3 Staging -- 2.4.1.4 Umbrella sampling -- 2.4.2 Bridge sampling -- 2.4.2.1 Presentation of the method -- 2.4.2.2 Derivation of the optimal function -- 2.4.2.3 Numerical strategy -- 2.4.2.4 Numerical illustration -- 2.5 Histogram methods -- 2.5.1 Principle of histogram methods -- 2.5.1.1 Free energy as an approximated canonical average -- 2.5.1.2 Combining partial samples -- 2.5.2 Extended bridge sampling -- 2.5.2.1 Presentation of the method -- 2.5.2.2 Recovering canonical averages.
2.5.2.3 Application to the model problem -- 3. Thermodynamic integration and sampling with constraints -- 3.1 Introduction: The alchemical setting -- 3.1.1 General strategy -- 3.1.2 Numerical application -- 3.2 The reaction coordinate case: configurational space sampling -- 3.2.1 Reaction coordinate and free energy -- 3.2.1.1 Marginal and conditional probability measures -- 3.2.1.2 The free energy -- 3.2.1.3 The case of a non-standard scalar product -- 3.2.2 The mean force -- 3.2.3 Sampling measures on submanifolds of Rn -- 3.2.3.1 Geometrical notation -- 3.2.3.2 Projected dynamics -- 3.2.3.3 Ergodicity of the projected dynamics -- 3.2.3.4 Softly and rigidly constrained dynamics -- 3.2.4 Sampling measures on submanifolds of Rn: dis- cretization -- 3.2.4.1 Rewriting of the projected dynamics (3.52) using Lagrange multipliers -- 3.2.4.2 Discretization of the projected dynamics (3.52) -- 3.2.4.3 Consistency of the predictor-corrector schemes. -- 3.2.4.4 Ergodicity of the numerical schemes and time discretiza- tion error -- 3.2.5 Computing the mean force -- 3.2.5.1 Methods based on the sampling of the conditional mea- sures v (.
3.3.3.1 Definition of the constrained dynamics -- 3.3.3.2 Properties of the constrained dynamics -- 3.3.4 Constrained Langevin processes -- 3.3.4.1 Definition of the dynamics -- 3.3.5 Numerical implementation -- 3.3.5.1 Numerical schemes for the Hamiltonian part -- 3.3.5.2 Fluctuation-dissipation part -- 3.3.5.3 Numerical schemes obtained by a splitting strategy -- 3.3.5.4 Metropolization -- 3.3.5.5 Exact sampling of constrained overdamped processes -- 3.3.6 Thermodynamic integration with constrained Langevin processes -- 3.3.6.1 Free energy -- 3.3.6.2 The case of molecular constraints -- 3.3.6.3 The mean force -- 3.3.6.4 Free energy from Lagrange multipliers -- 3.3.6.5 Numerical illustration -- 4. Nonequilibrium methods -- 4.1 The Jarzynski equality in the alchemical case -- 4.1.1 Markovian nonequilibrium simulations -- 4.1.2 Importance weights of nonequilibrium simulations -- 4.1.3 Practical implementation -- 4.1.4 Degeneracy of weights -- 4.1.4.1 Work distributions -- 4.1.4.2 An analytical example -- 4.1.4.3 Reducing the width of work distributions -- 4.1.5 Error analysis -- 4.1.5.1 One-sided averages -- 4.1.5.2 Double-sided averages -- 4.1.5.3 Influence of the parameters -- 4.1.5.4 Numerical results for Widom insertion -- 4.2 Generalized Jarzynski-Crooks fluctuation identity -- 4.2.1 Derivation of the identity -- 4.2.2 Relationship with standard equalities in the physics and chemistry literature -- 4.2.3 Numerical strategies -- 4.3 Nonequilibrium stochastic methods in the reaction coordi- nate case -- 4.3.1 Overdamped nonequilibrium dynamics -- 4.3.1.1 Definition of the switched dynamics -- 4.3.1.2 Jarzynski-Crooks identity -- 4.3.1.3 Numerical implementation -- 4.3.2 Hamiltonian and Langevin nonequilibrium dynamics -- 4.3.2.1 Generalized free energy and notation -- 4.3.2.2 Dynamics and generators -- 4.3.2.3 Definition of the work.
4.3.2.4 Jarzynski-Crooks identity -- 4.3.2.5 Numerical schemes -- 4.3.3 Numerical results -- 4.4 Path sampling strategies -- 4.4.1 The path ensemble -- 4.4.1.1 Equilibrium paths -- 4.4.1.2 Switching paths -- 4.4.2 Sampling switching paths -- 4.4.2.1 General sampling strategy -- 4.4.2.2 Shooting moves -- 4.4.2.3 Brownian tube moves for stochastic dynamics -- 4.4.2.4 Weighted path ensembles -- 4.4.2.5 Importance sampling -- 4.4.2.6 Efficiency of the path sampling approach -- 4.4.2.7 Application to Widom insertion -- 5. Adaptive methods -- 5.1 Adaptive algorithms: A general framework -- 5.1.1 Updating formulas -- 5.1.1.1 Observed free energy and mean force -- 5.1.1.2 Updating the bias with the observed quantities -- 5.1.1.3 Consistency of adaptive methods. -- 5.1.1.4 Generalized adaptive importance sampling strategies -- 5.1.1.5 Adaptive biasing force or adaptive biasing potential? -- 5.1.2 Extended dynamics -- 5.1.3 Discretization methods -- 5.1.3.1 Approximation of probability measures -- 5.1.3.2 Approximations based on kernel density estimation: regu- larization and mathematical results -- 5.1.3.3 Discretization of functions defined on the reaction coordi- nate space -- 5.1.3.4 Approximation of the law based on trajectorial averages -- 5.1.4 Classical examples of adaptive methods -- 5.1.4.1 Metadynamics -- 5.1.4.2 Wang-Landau -- 5.1.4.3 The Adaptive Biasing Force method -- 5.1.4.4 An ABF method in extended space -- 5.1.4.5 The self-healing umbrella sampling method -- 5.1.5 Numerical illustration -- 5.2 Convergence of the adaptive biasing force method -- 5.2.1 Presentation of the studied ABF dynamics -- 5.2.1.1 Notation and definitions -- 5.2.1.2 The ABF dynamics -- 5.2.1.3 Reformulation as a nonlinear partial differential equation -- 5.2.2 Precise statements of the convergence results -- 5.2.2.1 Decomposition of the entropy.
5.2.2.2 Convergence of the adaptive dynamics (5:60)-(5:61).
Abstract:
This monograph provides a general introduction to advanced computational methods for free energy calculations, from the systematic and rigorous point of view of applied mathematics. Free energy calculations in molecular dynamics have become an outstanding and increasingly broad computational field in physics, chemistry and molecular biology within the past few years, by making possible the analysis of complex molecular systems. This work proposes a new, general and rigorous presentation, intended both for practitioners interested in a mathematical treatment, and for applied mathematicians interested in molecular dynamics.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View