
Crystalline Materials for Actinide Immobilisation.
Title:
Crystalline Materials for Actinide Immobilisation.
Author:
Burakov, Boris E.
ISBN:
9781848164192
Personal Author:
Physical Description:
1 online resource (216 pages)
Series:
Materials for Engineering
Contents:
Contents -- Preface -- Abbreviations -- Acknowledgements -- Chapter 1 Introduction to the Actinides -- 1.1. Actinide Series -- 1.1.1. History -- 1.1.2. Basic physical and chemical properties -- 1.1.3. History of using actinide-containing materials -- 1.1.4. High toxicity and long-lived radioactivity -- 1.1.5. Need for actinide immobilisation -- 1.2. Natural Actinides and Minerals -- 1.2.1. Uraninite, pitchblende and thorianite -- 1.2.2. Coffinite and thorite -- 1.2.3. Brannerite -- 1.2.4. Miscellaneous -- 1.3. Artificial Actinides -- 1.3.1. Actinide production in the nuclear fuel cycle -- 1.3.2. Weapons-grade plutonium -- 1.3.3. Minor actinides -- 1.3.3.1. Neptunium-237 -- 1.3.3.2. Americium -- 1.3.3.3. Curium -- 1.3.3.4. Berkelium and Californium -- 1.4. Actinide Host-Phases -- 1.4.1. Natural accessory minerals -- 1.4.2. Zircon and hafnon -- 1.4.3. Monazite -- 1.4.4. Zirconolite -- 1.4.5. Baddeleyite (monoclinic zirconia) -- 1.4.6. Tazheranite (cubic zirconia) -- 1.4.7. Xenotime -- 1.4.8. Apatite -- 1.4.9. Pyrochlore -- 1.4.10. Perovskite -- 1.4.11. Garnet -- 1.4.12. Murataite -- 1.4.13. Kosnarite -- 1.4.14. Natural gels -- References -- Chapter 2 Current and Potential Actinide Applications -- 2.1. Advanced Nuclear Fuel Cycle -- 2.1.1. MOX nuclear fuel -- 2.1.2. Ceramic nuclear fuel -- 2.1.3. Advanced nuclear reactors -- 2.2. Inert Pu Ceramic Fuel -- 2.3. Sealed Radioactive Sources -- 2.4. Self-glowing Materials -- 2.5. Transmutation Targets -- 2.6. Summary -- References -- Chapter 3 Waste Actinide Immobilisation -- 3.1. Ceramic Nuclear Wasteforms: Historical Overview -- 3.1.1. Early work -- 3.1.2. Emergence of Pu wasteforms -- 3.1.3. Emergence of durability studies -- 3.2. Titanate-based Ceramics -- 3.2.1. Synroc -- 3.2.2. Ti-pyrochlore -- 3.3. Phosphate-based Ceramics -- 3.3.1. Monazite -- 3.3.2. Th-phosphate/diphosphate (TPD).
3.3.3. Kosnarite and NZP -- 3.3.4. Apatite -- 3.4. Ceramics Based on Zirconium and Hafnium Minerals -- 3.4.1. Zircon/zirconia and hafnon/hafnia -- 3.4.2. Cubic zirconia (tazheranite) and hafnia -- 3.5. Garnet/Perovskite -- 3.6. Summary -- References -- Chapter 4 Synthesis Methods -- 4.1. Precursor Fabrication -- 4.1.1. Sol-gel -- 4.1.2. Co-precipitation -- 4.1.3. Oxide powder mix -- 4.2. Hot Uniaxial Pressing (HUP) -- 4.3. Hot Isostatic Pressing (HIP) -- 4.4. Pressing-sintering -- 4.5. Melting-crystallisation -- 4.6. Self-sustaining (Self-propagating) High Temperature Reactions -- 4.7. Single Crystal Growth -- 4.8. Summary -- References -- Chapter 5 Examination of Highly Radioactive Samples -- 5.1. XRD Analysis -- 5.2. SEM and EPMA -- 5.3. Cathodoluminescence -- 5.4. Optical Microscopy -- 5.5. Mechanical Durability -- 5.6. Leach and Alteration Tests -- References -- Chapter 6 Radiation Damage -- 6.1. Ion-irradiation -- 6.2. Doping with 238Pu and 244Cm -- 6.2.1. Zircon/zirconia and hafnon/hafnia ceramics -- 6.2.2. Zircon single crystal -- 6.2.3. Cubic zirconia ceramic -- 6.2.4. Monazite ceramic -- 6.2.5. Monazite single crystal -- 6.2.6. Ti-pyrochlore ceramic -- 6.2.7. Zr-pyrochlore ceramic -- 6.2.8. Zirconolite ceramic -- 6.2.9. Garnet ceramic -- 6.2.10. Silicate-apatite ceramic and chlorine-apatite powder -- 6.3. Main Points from Self-irradiation/radiation Damage Studies -- References -- Chapter 7 What is the Future? -- 7.1. Safety Issues -- 7.2. Burning (Transmutation Option) -- 7.3. Disposal of Waste Actinides -- 7.4. Performance of Actinides in Disposal Environment -- 7.5. Conclusions -- Index.
Abstract:
This book summarises approaches and current practices in actinide immobilisation using chemically-durable crystalline materials e.g. ceramics and monocrystals. Durable actinide-containing materials including crystalline ceramics and single crystals are attractive for various applications such as nuclear fuel to burn excess Pu, chemically inert sources of; irradiation for use in unmanned space vehicles or producing electricity for microelectronic devices, and nuclear waste disposal. Long-lived emitting actinides such as Pu, Np, Am and Cm are currently of serious concern has a result of increased worldwide growth in the nuclear industry. Actinide-bearing wastes have also accumulated in different countries as a result of nuclear weapons production. Excess weapon and civil Pu from commercial spent fuel is waiting for environmentally-safe immobilisation. As actinides are chemical elements with unique features, they could be beneficially used in different areas of human life including medicine although currently there is no appropriate balance between safe actinide disposal and use. Both use and disposal of actinides require their immobilisation in a durable host material.The choice of an optimal actinide immobilisation route is often a great challenge for specialists. There is a wealth of information about actinide properties in many publications although little is published to summarise the currently accepted approaches and practices on actinide immobilisation. This book intends to provide such information based on the authors' experience and studies in nuclear material management and actinide immobilisation.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View