Cover image for Dependence Modeling : Vine Copula Handbook.
Dependence Modeling : Vine Copula Handbook.
Title:
Dependence Modeling : Vine Copula Handbook.
Author:
Kurowicka, Dorota.
ISBN:
9789814299886
Personal Author:
Physical Description:
1 online resource (368 pages)
Contents:
Contents -- Preface -- 1. Introduction: Dependence Modeling D. Kurowicka -- 1.1 Introduction -- 1.2 Investment Example -- 1.3 Vines -- 1.3.1 Graphical representation -- 1.3.2 Vine density -- 1.3.3 Estimation -- 1.3.4 Properties and applications -- 1.4 Outline -- 1.5 Glossary and Notation -- References -- 2. Multivariate Copulae M. Fischer -- 2.1 Copulae -- 2.2 Elliptical Copulae and Generalizations -- 2.2.1 Elliptical copulae -- 2.2.2 Generalized t-copulae -- 2.3 Archimedean Copulae and Generalizations -- 2.3.1 Classical Archimedean copulae -- 2.3.2 Non-exchangeable Archimedean copulae -- 2.3.3 Generalized multiplicative Archimedean copulae -- 2.3.4 Koehler-Symanowski copulae -- 2.4 Combinations of Arbitrary Copulae into a New One -- 2.5 Summary -- References -- 3. Vines Arise R. M. Cooke, H. Joe and K. Aas -- 3.1 Introduction -- 3.2 Regular Vines -- 3.3 Vine Types -- 3.3.1 Vine copula or pair-copula construction -- 3.3.2 Partial correlation vine -- 3.3.2.1 Partial correlation -- 3.3.2.2 Partial correlation vine -- 3.3.2.3 Applications -- 3.4 Historical Origins -- 3.5 Compatibility of Marginal Distributions -- 3.6 Sampling -- 3.6.1 Sampling a D-vine -- 3.6.2 Sampling an arbitrary regular vine -- 3.6.3 Density approach sampling -- 3.7 Parametric Inference for a Specific Pair-Copula Construction -- 3.7.1 Inference for a C-vine -- 3.7.2 Inference for a D-vine -- 3.8 Model Inference -- 3.8.1 Sequential selection -- 3.8.2 Information-based model inference -- 3.8.2.1 Definitions and theorems -- 3.9 Applications -- 3.9.1 Multivariate data analysis -- 3.9.2 Non-parametric Bayesian belief nets -- References -- 4. Sampling Count Variables with Specified Pearson Correlation: A Comparison between a Naive and a C-Vine Sampling Approach V. Erhardt and C. Czado -- 4.1 Introduction -- 4.2 Copulae and Multivariate Distributions.

4.3 Naive Sampling with Illustration to GP Count Data -- 4.4 Simulation Study -- 4.5 Summary and Discussion -- Acknowledgments -- References -- 5. Micro Correlations and Tail Dependence R. M. Cooke, C. Kousky and H. Joe -- 5.1 Introduction -- 5.2 Micro Correlations -- 5.3 Tail Dependence and Aggregation -- 5.3.1 Latent variable models for tail dependence -- 5.3.2 Sum of damages over extreme events -- 5.3.3 L1-symmetric measures -- 5.3.4 Tail dependence for sums of L1 measures -- 5.3.5 Lower tail dependence -- 5.4 Discussion -- Appendices -- References -- 6. The Copula Information Criterion and Its Implications for the Maximum Pseudo-Likelihood Estimator S. Grønneberg -- 6.1 Introduction -- 6.2 The Developments Leading to the CIC -- 6.2.1 The fully parametric MLE -- 6.2.2 Kullback-Leibler divergence and model selection -- 6.2.3 The MPLE, the empirical copula and invariance considerations -- 6.2.4 What about semiparametric efficiency? -- 6.2.5 Large-sample theory for the MPLE -- 6.3 Model Selection with the MPLE -- 6.3.1 Non-existence of bias-correction terms and implications for the MPLE -- 6.3.2 Philosophical implications of the CIC -- 6.4 Illustrations -- 6.5 Concluding Remarks -- Acknowledgments -- References -- 7. Dependence Comparisons of Vine Copulae with Four or More Variables H. Joe -- 7.1 Introduction -- 7.2 Equivalence Classes of Regular Vines -- 7.3 Simulation from Vine Copulae -- 7.4 Comparing Dependence of Vine Copulae -- 7.5 Gaussian Vines and Generalized Toeplitz Matrices -- 7.6 More Comparisons of Dependence for Different Vines -- 7.7 Discussion and Further Research -- Acknowledgments -- References -- 8. Tail Dependence in Vine Copulae H. Joe -- 8.1 Introduction -- 8.2 Tail Dependence in Different Multivariate Copula Families -- 8.3 Tail Dependence Parameters and Functions -- 8.3.1 Bivariate tail dependence.

8.3.2 Multivariate tail dependence functions -- 8.3.3 Conditional tail dependence functions -- 8.4 Main Theorem on Tail Dependence for Vine Copulae -- 8.5 Reflection Asymmetry of Vine Copulae -- 8.6 Choice of Tail Asymmetric Bivariate Linking Copulae -- 8.7 Discussion -- Acknowledgments -- Appendix -- References -- 9. Counting Vines O. Morales-Napoles -- 9.1 Introduction -- 9.2 Basic Definitions -- 9.3 Regular Vines and Prufer Codes -- 9.4 Regular Vines and Line Graphs -- 9.5 Regular Vines and Regular Vine Arrays -- 9.6 Classifying Regular Vines -- 9.7 Conclusions and Final Comments -- Appendix -- References -- 10. Regular Vines: Generation Algorithm and Number of Equivalence Classes H. Joe, R. M. Cooke and D. Kurowicka -- 10.1 Introduction -- 10.2 Naming Convention for Vines -- 10.3 Number of Equivalence Classes -- 10.4 Examples -- 10.5 Discussion -- Reference -- 11. Optimal Truncation of Vines D. Kurowicka -- 11.1 Introduction -- 11.2 Vines -- 11.3 Vine Distributions -- 11.3.1 Markov trees -- 11.3.2 Vines in trees -- 11.4 Optimal Truncation -- 11.4.1 Generating regular vines -- 11.4.2 Best vine -- 11.5 Optimal Truncation: Results -- 11.5.1 Example -- 11.5.2 Comparison -- 11.6 Conclusions -- References -- 12. Bayesian Inference for D-Vines: Estimation and Model Selection C. Czado and A. Min -- 12.1 Introduction -- 12.2 D-Vine -- 12.3 D-Vine PCC Based on t-Copulae -- 12.4 Bayesian Inference for D-Vine PCC Based on t-Copulae -- 12.5 Application: Australian Electricity Loads -- 12.6 Bayesian Model Selection for Australian Electricity Loads -- 12.7 Summary and Discussion -- Acknowledgments -- References -- 13. Analysis of Australian Electricity Loads Using Joint Bayesian Inference of D-Vines with Autoregressive Margins C. Czado, F. Gärtner and A. Min -- 13.1 Introduction.

13.2 Multivariate Time Series with D-Vine Dependency and Marginal Autoregressive Structure -- 13.3 Bayesian Analysis of Multivariate Time Series with D-Vine Dependency and Marginal Autoregressive Structure -- 13.4 Modeling Australian Electricity Loads -- 13.5 Bayesian Model Selection -- 13.6 Summary and Discussion -- Acknowledgments -- References -- 14. Non-Parametric Bayesian Belief Nets versus Vines A. Hanea -- 14.1 Introduction or: How to Represent Information Burdened by Uncertainty -- 14.2 Non-Parametric Bayesian Belief Nets: Sampling and Conditionalizing -- 14.2.1 Sampling an NPBBN -- 14.2.2 Conditionalizing an NPBBN -- 14.3 Data Mining with NPBBNs -- 14.4 Applications of NPBBNs -- 14.5 Conclusions -- References -- 15. Modeling Dependence between Financial Returns Using Pair-Copula Constructions K. Aas and D. Berg -- 15.1 Introduction -- 15.2 Constructions of Higher-Dimensional Dependence -- 15.2.1 Student copula -- 15.2.2 Partially nested Archimedean construction (PNAC) -- 15.2.3 Pair-copula construction (PCC) -- 15.3 Parameter Estimation -- 15.3.1 Student copula -- 15.3.2 PNAC -- 15.3.3 PCC -- 15.4 Portfolio 1 -- 15.4.1 Data set -- 15.4.2 Results -- 15.4.2.1 PNAC -- 15.4.2.2 PCC -- 15.4.3 Validation -- 15.5 Portfolio 2 -- 15.5.1 Data set -- 15.5.2 Results -- 15.5.2.1 PCC -- 15.5.2.2 Four-dimensional Student copula -- 15.5.3 Tail dependence -- 15.5.4 Pair-copula decomposition with copulae from di.erent families -- 15.6 Summary and Conclusions -- Acknowledgments -- References -- 16. Dynamic D-Vine Model A. Heinen and A. Valdesogo -- 16.1 Introduction -- 16.2 The Model -- 16.2.1 Copulae -- 16.2.1.1 Copula-based dependence measures -- 16.2.1.2 Asymmetric dependence, exceedance correlation and tail dependence -- 16.2.2 D-vine copula -- 16.2.3 Dynamic D-vine model -- 16.3 Components of the Model -- 16.3.1 Marginal model -- 16.3.2 Bivariate copulae.

16.3.2.1 Gaussian copula -- 16.3.2.2 Student t-copula -- 16.3.2.3 Frank copula -- 16.3.2.4 Gumbel and rotated Gumbel copula -- 16.3.2.5 Clayton copula -- 16.4 Empirical Results -- 16.4.1 Data -- 16.4.2 Marginal models -- 16.4.3 Copula structure -- 16.5 Conclusion -- References -- 17. Summary and Future Directions D. Kurowicka -- 17.1 Summary -- 17.2 Future Research Directions -- Index.
Abstract:
This book is a collaborative effort from three workshops held over the last three years, all involving principal contributors to the vine-copula methodology. Research and applications in vines have been growing rapidly and there is now a growing need to collate basic results, and standardize terminology and methods. Specifically, this handbook will trace historical developments, standardizing notation and terminology, summarize results on bivariate copulae, summarize results for regular vines, and give an overview of its applications. In addition, many of these results are new and not readily available in any existing journals. New research directions are also discussed.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: