Cover image for At the Leading Edge : The Atlas and CMS LHC Experiments.
At the Leading Edge : The Atlas and CMS LHC Experiments.
Title:
At the Leading Edge : The Atlas and CMS LHC Experiments.
Author:
Green, Dan.
ISBN:
9789814277624
Personal Author:
Physical Description:
1 online resource (448 pages)
Contents:
CONTENTS -- Chapter 1 Introduction: How Physics Defines the LHC Environment and Detectors D. Green -- 1. Introduction -- 2. Electroweak Symmetry Breaking (EWSB) -- 3. LHC Luminosity and Energy -- 4. Global Detector Properties -- 5. The "Generic" Detector -- 6. The Generic Vertex Subsystem -- 7. The Generic Solenoid Magnet -- 8. The Generic Tracker Subsystem -- 9. The Generic ECAL -- 10. The Generic HCAL -- 11. The Neutron Field -- 12. The Generic Muon System -- 13. Up the Food Chain -- Acknowledgments -- References -- Chapter 2 The CMS Pixel Detector W. Erdmann -- 1. Introduction -- 2. Overview -- 2.1. The pixel shape -- 2.2. Detector layout -- 2.3. Radiation hardness -- 3. Sensors -- 4. Front-End Electronics -- 4.1. Analog section -- 4.2. Readout architecture -- 4.3. Control -- 5. Modules -- 6. Readout -- 7. Mechanics and Installation -- 8. Power -- 9. Conclusion -- References -- Chapter 3 The Hybrid Tracking System of ATLAS Leonardo Rossi -- 1. Introduction -- 2. Design Issues -- 2.1. Geometrical constraints -- 2.2. Environmental constraints -- 2.3. Performance requirements -- 3. The ATLAS Central Tracker -- 3.1. Pixels -- 3.2. Semiconductor tracker -- 3.3. Transition radiation tracker -- 4. Some Key Challenges -- 4.1. Evaporative cooling system -- 4.2. Alignment -- 4.3. Material minimization -- 5. Conclusions and Lessons Learnt -- References -- Chapter 4 The All-Silicon Strip CMS Tracker: Microtechnology at the Macroscale M. Mannelli -- 1. Introduction and Overview -- 2. Performance Requirements and Layout of the CMS Silicon Tracker -- 3. Design Choices for the Silicon Strip Sensors and Modules of the CMS Tracker -- 3.1. Radiation hardness requirements -- 3.2. Choice of substrate type -- 3.3. Coupling to readout electronics and its implications for the sensor technology -- 3.4. Optimization of sensor design and parameters.

3.5. Moving from 4 diameter to 6 silicon sensor production lines -- 3.6. Design considerations for the CMS silicon strip modules -- 3.7. Automated assembly of the silicon strip modules for the CMS tracker -- 4. The Performance Potential of the CMS All-Silicon Tracker -- 5. Summary and Conclusions -- Lessons Learnt -- References -- Chapter 5 The ATLAS Electromagnetic Calorimeters: Features and Performance Luciano Mandelli -- 1. Introduction -- 2. The Principles of Liquid Argon Electromagnetic Calorimetry -- 2.1. The sampling and the pulse shape -- 2.2. The longitudinal and transverse development of an electromagnetic shower -- 2.3. The pileup and the pulse shaping -- 2.4. The measurement of the energy deposited in the calorimeter -- 2.5. The sampling and the energy resolution -- 2.6. Stability with time -- 3. The ATLAS Electromagnetic Calorimeters -- 3.1. The barrel calorimeter -- 3.2. The end-cap calorimeters -- 3.3. The electrodes and the longitudinal and transverse segmentation -- 3.4. The material upstream of the calorimeter and the need for a presampler -- 3.5. The signal readout and the "electromagnetic energy scale" -- 3.6. The back-end electronics -- computation of energy and timing of the signal -- 4. Computation of the Particle Energy and Direction -- 4.1. Corrections applied to the measured energy -- 4.2. The energy resolution constant term -- 4.3. Shower position and direction -- 5. Rejection Power Against Hadrons and Sensitivity to the H(γγ) Signal -- 6. Conclusions -- Acknowledgments -- References -- Chapter 6 The CMS Electromagnetic Calorimeter: Crystals and APD Productions P. Bloch -- 1. Introduction -- 2. Short Description of the CMS ECAL6 -- 3. Lead Tungstate Crystals -- 3.1. Physical properties of lead tungstate -- 3.2. Crystal production -- 3.3. Mechanical processing and light collection uniformity.

3.4. Production quality control -- 3.5. Radiation hardness and its control -- 3.6. Conclusions -- 4. Production and Tests of 130,000 Avalanche Photodiodes -- 4.1. Introduction -- 4.2. APD radiation hardness and production screening24 -- 4.3. Performance in situ -- 5. Conclusion -- Acknowledgments -- References -- Chapter 7 ATLAS Electronics: An Overview Philippe Farthouat -- 1. Introduction -- 2. Main Parameters -- 2.1. Number of channels -- 2.2. Interface to the trigger and data acquisition system -- 2.3. Environmental constraints -- 2.3.1. Radiation -- 2.3.2. Magnetic field -- 2.3.3. Access -- 2.3.4. Services caverns -- 3. Front-End Electronics -- 3.1. Front-end ASICs -- 3.2. Front-end and TTC links -- 3.3. Front-end modules -- 3.4. Power in the front-end electronics systems -- 4. Trigger and O.-Detector Electronics -- 4.1. L1 trigger electronics -- 4.2. Off-detector readout electronics -- 5. Common Issues -- 5.1. The embedded local monitor board -- 5.2. The ATLAS policy on radiation-tolerant electronics -- 5.3. The ATLAS EMC policy -- 6. Development Schedule -- 7. Conclusions -- References -- Chapter 8 Innovations in the CMS Tracker Electronics G. Hall -- 1. Introduction -- 2. Requirements for an LHC Tracker -- 3. Front-End Readout -- 3.1. Analogue versus binary -- 3.2. Front-end chip evolution -- 3.3. Production -- 3.4. Performance -- 4. Optical Links -- 4.1. Early developments -- 4.2. Semiconductor lasers -- 4.3. Optical system issues -- 4.4. Optical link cost and performance -- 5. Overall System Design -- 5.1. Control and monitoring system -- 5.2. Off-detector electronics -- 5.3. CMS choices -- 6. Applications Elsewhere and Lessons Learned -- Acknowledgments -- References -- Chapter 9 TileCal: The Hadronic Section of the Central ATLAS Calorimeter K. Anderson, T. Del Prete, E. Fullana, J. Huston, C. Roda and R. Stanek.

1. TileCal Design: Motivation and Requirements -- 2. TileCal Solutions -- 2.1. Mechanics -- 2.1.1. The principles of the detector design -- 2.1.2. Module construction -- 2.1.3. Submodule construction and module production -- 2.2. Optics -- 2.3. Readout -- 2.3.1. Mechanics and overview -- 2.3.2. 3-in-1 card -- 2.3.3. Motherboard control system -- 2.3.4. Digitizers -- 2.3.5. Optical interface card -- 2.4. Monitoring system -- 2.4.1. Charge injection system -- 2.4.2. Radioactive 137Cs system -- 2.4.3. Laser system -- 2.4.4. Minimum bias current system -- 3. Performance of the Tile Calorimeter -- 3.1. Measuring the performance with test beams -- 3.2. Experience with the installed detector: cosmic muons and single beam events -- References -- Chapter 10 Innovations for the CMS HCAL J. Freeman -- Front-End Electronics -- Summary -- References -- Chapter 11 ATLAS Superconducting Toroids - The Largest Ever Built Herman H. J. ten Kate -- 1. Introduction -- 2. Why a Toroid? -- 3. Superconductors for Detector Magnets -- 4. Barrel Toroid Construction Challenges -- 5. End-Cap Toroids -- 6. Play of Forces between Barrel and End-Cap Toroids -- 7. Central Solenoid in the Barrel Toroid Bore -- 8. Magnet Operation Necessities -- 9. First Operational Experience -- 10. Conclusion -- Acknowledgments -- References -- Chapter 12 Constructing a 4-Tesla Large Thin Solenoid at the Limit of What Can Be Safely Operated A. Hervé -- 1. The Role of the Coil in the Experiment Layout -- 2. Coil Description -- 3. Challenges of Large High-Field Epoxy-Potted Superconducting Coils -- 3.1. Quench protection method -- 3.2. Thermosiphon cooling method -- 3.3. Enthalpy stabilization -- 3.4. Mechanical stresses and strains -- 3.5. Glass-epoxy insulation -- 4. Departing Parameters -- 5. The Compound Conductor -- 6. Design Challenges at the Inception of the Project.

7. How the Design Challenges Have Been Met -- 7.1. Superconducting insert -- 7.2. Compound conductor -- 7.3. Selection of material for the mandrels -- 7.4. Manufacture of mandrels -- 7.5. Winding a stiff conductor -- 7.6. Limiting the shear stress inside the coil -- 7.7. Coil assembly -- 7.8. Quality control -- 7.9. Project organization -- 8. Critical Review of Retained Solutions and Their Relevance to Designing a New 4 or 5T Coil -- 8.1. Critical current and stability considerations -- 8.2. Compound-reinforced conductor considerations -- 8.3. Is it necessary to improve the mechanical properties of the alloys for the reinforcement and the mandrels? -- 8.4. Improving the compound-reinforced conductor by replacing the pure aluminum stabilizer -- 8.5. Attaching the reinforcement sections to the insert -- 9. Conclusions -- References -- Chapter 13 The ATLAS Muon Spectrometer Giora Mikenberg -- 1. Introduction -- 2. Spectrometer Design -- 3. Testing and Quality Control -- 4. Initial Performance of the ATLAS Muon Spectrometer -- References -- Chapter 14 The CMS Muon Detector: From the First Thoughts to the Final Design Fabrizio Gasparini -- 1. Introduction -- 2. The MUON Detectors -- 3. A Few Further Remarks -- 4. The CMS Iron Yoke and the Chamber Type -- 5. The Requirements of Spatial Resolution -- 6. The Trigger Issue and the Number of Layers -- 6.1. The drift tubes case -- 6.2. The CSC case -- 7. The Choice of the Detector Parameters -- 8. The Constraints from the Magnetic Field -- 9. Few Final Comments -- 10. The RPC -- 11. Alignment -- 12. Conclusion -- References -- Chapter 15 The Why and How of the ATLAS Data Acquisition System Livio Mapelli and Giuseppe Mornacchi -- 1. Introduction -- 2. Problem Description -- 3. Conceptual Data Acquisition for a Typical LHC Experiment -- 4. Driving Principles of the ATLAS DAQ Design.

4.1. Factorization and partitioning.
Abstract:
Too often descriptions of detectors focus on the what and not the why. This volume aims to elucidate how the requirements of the physics at the Large Hadron Collider (LHC) define the detector environment. In turn, the detector choices are made to adopt to that environment. The goal of LHC physics is to explore the mechanism for electroweak symmetry breaking. Because of the minuscule cross-sections which need to be explored, 0.1 fb, the LHC needs to provide 100 fb-1/yr, or an instantaneous luminosity of 1034 / (cm2 sec). With a bunch crossing interval of 25 nsec, well matched to detector speeds, there will be 25 events occupying each bunch crossing. Thus the physics requires fast, finely segmented, low noise and radiation resistant detectors which provide redundant measurements of the rarely produced electrons and muons. To achieve those goals, new ground was broken in constructing the A Toroidal LHC Apparatus (ATLAS) and Compact Muon Solenoid (CMS) detectors in the vertex detectors, tracking systems, calorimetry, strong magnets, muon systems, front end electronics, trigger systems, and in the data acquisition methods used.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: