Cover image for Recent Trends in Radiation Chemistry.
Recent Trends in Radiation Chemistry.
Title:
Recent Trends in Radiation Chemistry.
Author:
Wishart, James F.
ISBN:
9789814282093
Personal Author:
Physical Description:
1 online resource (636 pages)
Contents:
Contents -- Foreword -- Preface -- About the Editors -- Contributors -- Chapter 1 An Incomplete History of Radiation Chemistry Charles D. Jonah -- 1. Introduction -- 2. The Period of Natural Isotopic Sources -- 3. X-Ray Generator in Radiation Chemistry -- 4. Steady-State Radiolysis, the War Years and After -- 5. A Slight Detour in Our "Tour Through Radiation-Chemistry Techniques" -- 6. The Development of Pulse Radiolysis -- 7. Sub-nanosecond Pulse Radiolysis -- 8. Laser-Simulated Radiation Chemistry -- 9. The Future -- References -- Chapter 2 An Overview of Solvated Electrons: Recent Advances Mehran Mostafavi and Isabelle Lampre -- 1. Introduction -- 2. Discovery and Formation of the Solvated Electron -- 2.1. Story of the solvated electron -- 2.2. Production of the solvated electron -- 3. Some Physical Properties of the Solvated Electron -- 3.1. Volume -- 3.2. Charge -- 3.3. Mobility -- 3.4. Optical absorption -- 3.5. Structure -- 4. Chemical Reactivity of the Solvated Electron -- 4.1. Geminate recombinations and spur reactions -- 4.2. Reaction with a solute -- 4.3. Formation of ion pairs -- 5. Solvation Dynamics of the Electron -- 6. Conclusion -- References -- Chapter 3 The Structure and Dynamics of Solvated Electrons Ilya A. Shkrob -- 1. Introduction -- 2. The Cavity Electron -- 3. Excited States, Precursors, and Dynamics -- 3.1. "Hot" s- and p-like states -- 3.2. "Weakly bound" and "dry" electrons, relocalization, and attachment -- 4. The Cavity Electron Revisited -- 4.1. Magnetic resonance -- 4.2. Vibrational spectroscopy -- 4.3. Substructure of the s-p absorption band -- 5. The Heterodoxy: Solvent Stabilized Multimer Radical Anion -- 6. Concluding Remarks -- References -- Chapter 4 Instrumentation in Pulse Radiolysis Eberhard Janata -- 1. Introduction -- 2. Instrumentation -- 2.1. General -- 2.2. Accelerators -- 2.3. Detection apparatus.

2.3.1. Measuring cell -- 2.3.2. Optical detection -- 2.3.3. Conductometric detection techniques -- 2.3.4. Other detection methods -- 2.4. Auxiliary circuits -- 2.5. Computer aided experiments -- 3. Summary -- 4. Appendix -- 4.1. Calculation of optical properties -- 4.2. Calculation of conductometric properties -- 4.3. Dosimetry -- 4.4. Noise and signal-to-noise ratio -- References -- Chapter 5 Ultrafast Pulse Radiolysis Methods Jacqueline Belloni, Robert A. Crowell, Yosuke Katsumura, Mingzhang Lin, Jean-Louis Marignier, Mehran Mostafavi, Yusa Muroya, Akinori Saeki, Seiichi Tagawa, Yoichi Yoshida, Vincent De Waele and James F. Wishart -- 1. Introduction -- 2. Picosecond Accelerator Technology -- 2.1. The first generation of picosecond accelerators for radiolysis -- 2.2. Magnetic pulse compression -- 2.3. Laser photocathode electron gun accelerators -- 2.3.1. Laser and electron gun synchronization -- 2.3.2. Photocathodes -- 2.3.3. Energy dependence of electron beam characteristics -- 2.3.4. Typical picosecond electron gun accelerator systems -- 2.4. Laser wakefield accelerators for ultrafast pulse radiolysis -- 2.5. Electron pulse width determination -- 3. Optical Detection Systems for Ultrafast Pulse Radiolysis -- 3.1. Temporal resolution considerations for fast optical detection -- 3.2. Pulse-probe detection systems -- 3.3. Single-shot radiolysis using a temporally-dispersed probe beam -- 3.4. Streak camera absorbance detection -- 4. Future Trends -- References -- Chapter 6 A History of Pulse-Radiolysis Time-Resolved Microwave Conductivity (PR-TRMC) Studies John M. Warman and Matthijs P. de Haas -- 1. Introduction -- 2. The Technique -- 3. Materials and Mechanisms Investigated -- 3.1. Gases -- 3.1.1. Electron attachment -- 3.1.2. Electron thermalization -- 3.1.3. Recombination -- 3.2. Dielectric liquids.

3.2.1. Electron mobility and reaction kinetics -- 3.2.2. Radical cation ("hole") mobility and reaction kinetics -- 3.2.3. (Geminate) charge recombination -- 3.2.4. Electron thermalization -- 3.3. Frozen aqueous media -- 3.3.1. Ice -- 3.3.2. Hydrated biopolymers -- 3.4. Inorganic semiconductors -- 3.4.1. Cadmium sulfide -- 3.4.2. Metal oxides -- 3.4.3. Amorphous silicon -- 3.4.4. C60 -- 3.5. Polymers -- 3.5.1. Polyethylene -- 3.5.2. Polydiacetylenes -- 3.5.3. π-bond conjugated polymers -- 3.5.4. σ-bond conjugated polymers -- 3.6. Liquid solutions of conjugated polymers -- 3.7. Discotic liquid crystals -- 4. Future Perspectives -- References -- Chapter 7 Infrared Spectroscopy and Radiation Chemistry Sophie Le Caër, Serge Pin, Jean Philippe Renault, Georges Vigneron and Stanislas Pommeret -- 1. Introduction -- 2. Infrared Spectroscopy -- 2.1. Some definitions -- 2.2. Principle of an infrared spectrometer -- 3. First Coupling of Radiation Chemistry and Infrared Spectroscopy: The Astrophysical Studies on Ice -- 4. Advances in the Understanding of Radiation-Induced Surface Chemistry: The IR-RAS Technique -- 5. Infrared Spectroscopy: A Tool to Characterize the Specificities of Swift Heavy Ions (SHI) Irradiations -- 6. Towards Time-Resolved Experiments: Coupling a LINAC with Infrared Spectroscopy -- 6.1. Kinetics of radiation-induced polymerization -- 6.2. Organometallic chemistry -- 6.3. Towards the characterization of nanomaterials under irradiation -- 6.4. Infrared spectroscopy and radiation biochemistry -- 6.4.1. Study of aquometmyoglobin modifications in buffered solution -- 6.4.2. Study of metmyoglobin modifications in KBr pellet -- 7. Conclusion and Perspectives -- References -- Chapter 8 Chemical Processes in Heavy Ion Tracks Gérard Baldacchino and Yosuke Katsumura -- 1. Introduction.

2. Summary of the Specific Interaction of High Energy Ions with Water -- 3. Determination of Doses, Concentrations and Yields -- 3.1. Some comments concerning the G-value and track segment G-value -- 3.2. Concentration measurement methods -- 3.3. Dose evaluation -- 3.4. Fragmentation for very high energy particles -- 4. Time Dependence, Comments About the Homogeneous Distribution and the Scavenging Time -- 4.1. Track average yields -- 4.2. Track segment yields -- 4.3. G-value dependence of LET and MZ 2/E -- 5. Experimental Results with High LET Particles -- 5.1. The hydrated electron -- 5.2. The hydroxyl radical -- 5.3. The superoxide radical -- 5.4. Molecular species: H2O2 and H2 -- 6. Simulation -- 7. Future -- 7.1. Heavy ion picosecond pulse radiolysis -- 7.2. Influence of chemical and thermodynamic parameters -- 8. A Non-exhaustive List of Facilities Devoted to Radiation Chemistry with Heavy Ion -- Acknowledgment -- References -- Chapter 9 Radiolysis of Supercritical Water Mingzhang Lin, Yusa Muroya, Gérard Baldacchino and Yosuke Katsumura -- 1. Introduction -- 2. General Concepts of Water Radiolysis -- 3. Experimental System and Technical Difficulties -- 4. Measurement of the Yields of Water Decomposition Products -- 4.1. G(e- aq) -- 4.2. {G(e - aq) +G(H) +G(OH)} -- 4.3. G(OH)33 -- 4.4. About G(H) -- 5. Radiation-Induced Reactions and Rate Constants -- 5.1. Reactions with e - aq -- 5.1.1. Ionic reactants -- 5.1.2. Hydrophobic or neutral species -- 5.2. Reactions with OH radical -- 6. Spectral Properties of Transient Species -- 6.1. Hydrated electron -- 6.2. Other transient species -- 7. Conclusions -- Acknowledgments -- References -- Chapter 10 Pulse Radiolysis in Supercritical Krypton and Xenon Fluids Richard Holroyd -- 1. Introduction -- 2. Early Processes -- 2.1. Excitation transfer -- 3. Ionic Properties -- 3.1. Theory of electrostriction.

3.2. Experimental evidence of clustering -- 4. Electron Properties -- 4.1. Mobility -- 4.2. Conduction band energy -- 5. Electron Reactions -- 5.1. Electron attachment -- 5.2. Electron attachment/detachment -- 5.3. Energetics -- 6. Charge Transfer Reactions -- 7. Conclusion -- Acknowledgment -- References -- Chapter 11 Radiation-Induced Processes at Solid-Liquid Interfaces Mats Jonsson -- 1. Introduction -- 2. Geometrical Dose Distribution -- 3. Effects of Solid-Liquid Interfaces on the Radiation Chemical Yield -- 4. Kinetics of Interfacial Reactions -- 5. Kinetics and Mechanism of UO2 (s) Oxidation -- 6. Relative Impact of Radiolysis Products -- 7. Reactions Between H2O2 and Metal Oxides -- 8. Radiation-Enhanced Reactivity of the Solid Interface -- 9. The Steady-State Approach -- 10. Dissolution of Spent Nuclear Fuel -- References -- Chapter 12 Radiolysis of Water Confined in Nanoporous Materials Raluca Musat, Mohammad Shahdo Alam and Jean Philippe Renault -- 1. Introduction -- 2. The Questions Raised by Radiolysis of Confined Water -- 3. Confining Materials and Confined Water -- 3.1. Confining materials -- 3.2. Confined water -- 4. Dosimetry in Nanoporous Media -- 5. Radiolytic Yields Modification by Confinement -- 5.1. Dihydrogen -- 5.2. Hydroxyl radical -- 5.3. Aqueous electron -- 5.4. Hydrogen peroxide -- 6. Kinetics Modification by Confinement -- 7. Conclusions and Perspectives -- References -- Chapter 13 Metal Clusters and Nanomaterials: Contribution of Radiation Chemistry Hynd Remita and Samy Remita -- 1. Introduction -- 2. Radiation Induced Formation of Metal Clusters and Dose Effect -- 3. Ligand Effect and Size Control of Metal Nanoparticles -- 4. Size-Dependent Properties -- 5. Bimetallic Nanoparticles Synthesis and Dose Rate Effect -- 5.1. Ag/Pd system -- 5.2. Au/Ag system -- 5.3. Au/Pd system -- 6. Linear Energy Transfer (LET) Effect.

7. Some Applications of Metallic and Bimetallic Nanoparticles.
Abstract:
"Recent Trends in Radiation Chemistry" is a state-of-the-art review of the present status and future trends in the field of radiation chemistry research. It covers a broad spectrum of topics, ranging from the historical perspective, instrumentation of accelerators in the nanosecond to femtosecond region, through the use of radiation chemical methods in the study of antioxidants and nanomaterials, radiation induced DNA damage by ionizing radiation involving both direct and indirect effects, to ultrafast events in free electron transfer, radiation-induced processes at solid-liquid interfaces and the recent work on infrared spectroscopy and radiation chemistry. The contributors to the book are world-renowned specialists. The book is unique in that it covers a wide spectrum of topics that will be of great interest to beginners as well as experts. Recent data on ultrafast phenomena from the recently established world class laser driven accelerators facilities in the US, France and Japan is reviewed. There has not been a significant book covering the important field of radiation chemistry during the last 5 years.This timely book, which includes highlights of recent work, will appeal not only to the specialists working in the area but also to other researchers involved in related specialties.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Added Author:
Electronic Access:
Click to View
Holds: Copies: