
XVIth International Congress on Mathematical Physics.
Title:
XVIth International Congress on Mathematical Physics.
Author:
Exner, Pavel.
ISBN:
9789814304634
Personal Author:
Physical Description:
1 online resource (709 pages)
Contents:
CONTENTS -- Preface -- Congress Committees -- INTERNATIONAL SCIENTIFIC COMMITTEE -- Prize Committees -- Acknowledgments -- Welcome addresses -- Henri Poincaré Prize -- LAUDATIO BY JAKOB YNGVASON -- LAUDATIO BY DOMOKOS SZÁSZ -- LAUDATIO BY JOEL LEBOWITZ -- IAMP Early Career Award and other prizes -- OTHER PRIZES AWARDED AT THE CONGRESS -- IUPAP YOUNG SCIENTIST PRIZE -- SPRINGER BEST POSTER PRIZE -- ANNALES HENRI POINCARÉ PRIZES -- THE AHP PRIZE -- THE AHP DISTINGUISHED PAPER AWARD -- Part A Plenary Talks -- Quantum geometry of 3-dimensional lattices and tetrahedron equation V.V. Bazhanov, V.V. Mangazeev, S.M. Sergeev -- Keywords: -- 1. Introduction -- 2. Discrete differential geometry: "Existence as integrability" -- 2.1. Quadrilateral lattices -- 2.2. Discrete evolution systems: "Existence as integrability" -- 3. Quantization of the 3D circular lattices -- 3.1. Poisson structure of circular lattices -- 3.2. Quantization and the tetrahedron equation -- 4. Solutions of the tetrahedron equation -- 4.1. Fock representation solution -- 4.2. Modular double solution -- 4.2.1. The "interaction-round-a-cube" formulation of the modular double solution -- 4.3. Cyclic representation solution -- 4.3.1. Generalized form of the q-oscillator map -- 4.3.2. Cyclic representations of the q-oscillator algebra -- 4.3.3. Solution of the tetrahedron equation -- 5. Conclusion -- Acknowledgments -- References -- The formation of black holes in general relativity D. Christodoulou -- Keywords: -- References -- Liouville quantum gravity & the KPZ relation: a rigorous perspective B. Duplantier -- Keywords: -- 1. Introduction -- 1.1. Historical perspective -- 1.2. Quantum measure -- 1.3. Euclidean and quantum scaling exponents -- 1.4. Box formulation of Liouville quantum gravity -- 1.5. Statement of KPZ -- 2. GFF regularization -- 2.1. GFF circular average.
2.2. GFF covariance -- 2.3. GFF circular average and Brownian motion -- 2.3.1. Brownian motion -- 3. Random measure and Liouville quantum gravity -- 3.1. Gaussian exponential averages -- 3.2. Liouville weighted GFF measure -- 3.3. Random measure and Brownian motion with drift -- 4. KPZ Proof -- 4.1. Quantum balls -- 4.2. Quantum scaling -- 4.3. Brownian stopping time -- 4.4. Brownian martingale -- 4.5. Probability distribution and GFF thick points -- 5. Boundary KPZ -- 5.1. Boundary quantum measure. -- 5.2. Boundary scaling and KPZ -- 6. Liouville quantum duality -- 6.1. ' = 4/ Liouville duality -- 6.2. Brownian approach to duality [2] -- Conclusion and Perspectives -- Acknowledgements -- References -- Universality of Wigner random matrices L. Erd˝os -- Keywords: -- 1. Introduction -- 2. Local semicircle law, delocalization and level repulsion -- 3. Sine kernel universality -- 4. Dyson Brownian motion -- 5. Local Relaxation Flow -- 6. Proof of Theorem 5.1 -- Acknowledgements -- References -- Uses of free probability in random matrix theory A. Guionnet -- Keywords: -- 1. Introduction -- 2. Free probability theory -- 2.1. Basics of free probability -- 2.2. Free Brownian motion -- 2.3. Free convolution -- 3. Single ring theorem -- 4. Enumeration of maps -- 5. Conclusion -- References -- The physics of decision making: stochastic differential equations as models for neural dynamics and evidence accumulation in cortical circuits P. Holmes, P. Eckho., K.F. Wong-Lin, R. Bogacz, M. Zacksenhouse, J.D. Cohen -- 1. Introduction -- 2. Decision-making models and an optimal speed-accuracy tradeo -- 2.1. Leaky competing accumulators and drift-diffusion processes -- 2.2. A spiking neuron model and its reduction to competing accumulators -- 2.3. An optimal speed-accuracy tradeo -- 3. Behavioral experiments: a prevalent lack of optimality.
3.1. A preference for accuracy? -- 3.2. Robust decisions in the face of uncertainty? -- 3.3. Biophysical constraints? -- 4. Discussion and conclusions -- Acknowledgments -- References -- New technologies in the hunt for new physics D.A. Kosower -- Keywords: -- 1. Introduction -- 2. On-Shell Methods -- 2.1. Integrals -- 2.2. Unitarity -- 2.3. Factorization and On-Shell Recursion Relations -- 2.4. Numerical Methods -- 3. N = 4 Supersymmetry: A Theoretical Laboratory -- Acknowledgments -- References -- Operator algebras and noncommutative geometric aspects in conformal field theory R. Longo -- Kinetic transport in crystals J. Marklof -- 1. Introduction -- 2. The periodic Lorentz gas -- 3. Why "a generalization" of the linear Boltzmann equation? -- 4. Joint distribution of path segments -- 5. A limiting random flight process -- 6. The distribution of free path lengths -- 7. The space of lattices -- 8. Equidistribution in the space of lattices -- 9. Asymptotics -- 10. Outlook -- Acknowledgements -- References -- Ising models, universality and the non renormalization of the quantum anomalies V. Mastropietro -- Keywords: -- 1. Introduction -- 2. Ising, Vertex and Ashkin-Teller models -- 3. Quantum spin chain and 1D Fermi systems -- 4. Universal relations -- 5. Renormalization Group analysis for coupled Ising models -- 6. Proof of universality and anomaly non renormalization -- 7. Renormalization Group for Quantum spin chain and 1D Fermi systems -- 8. Universality for quantum spin chains and 1D Fermi systems -- 9. Conclusions -- References -- The infrared problem in nonrelativistic QED A. Pizzo -- 1. Introduction -- 2. Spectroscopy in nonrelativistic QED -- 2.1. Atoms and molecules -- 2.1.1. Spectral analysis -- 2.1.2. Asymptotic completeness, metastable states, and Bohr's frequency condition. -- 2.2. Infraparticles and Čerenkov radiation.
2.2.1. Dressed electron states -- 2.2.2. Infraparticle scattering states -- Appendix A -- Appendix B -- Acknowledgments -- References -- Parking in the city: an example of limited resource sharing P. Šeba -- 1. Introduction -- 2. The parking process -- 3. The parking maneuver -- 4. The measured data -- References -- Hot topics in cold gases R. Seiringer -- Keywords: -- 1. Introduction -- 1.1. The Bose Gas: A Quantum Many-Body Problem -- 1.2. Quantities of Interest -- 2. Homogeneous Systems in the Thermodynamic Limit -- 2.1. The Ground State Energy of Homogeneous Bose Gases -- 2.2. Homogeneous Bose Gas at Positive Temperature -- 2.3. Critical Temperature for BEC -- 3. Trapped Bose Gases -- 3.1. The Gross-Pitaevskii Equation -- 3.2. Ground State Energy of Dilute Trapped Gases -- 3.3. BEC for Rotating Trapped Gases -- 3.4. Rapid Rotation -- Acknowledgments -- References -- Vortex patterns in Ginzburg-Landau minimizers S. Serfaty, E. Sandier -- Keywords: -- 1. Introduction -- 1.1. The model -- 1.2. Formal look at the solutions, vortices and critical fields -- 1.2.1. Types of solutions -- 1.2.2. Vortices and their benefit -- 1.2.3. Critical fields -- 2. Main results for global minimization at the leading order -- 2.1. The vorticity measures -- 2.2. Global minimizers of G" close to Hc1 -- 2.3. Global minimizers in the intermediate regime -- 2.4. Global minimizers in the regime n" proportional to hex -- 2.5. Global minimizers in the regime
2.1. Twisted chiral ring and quantum integrability -- 2.2. Topological field theory -- 2.3. Yang-Yang function and quantum spectrum -- 2.4. Quantization from four dimensions -- 3. Four dimensional gauge theory -- 3.1. The -background and twisted masses -- 3.1.1. Four dimensional theory on R2ε -- 3.1.2. Calculation of the twisted superpotential -- 4. Integrable systems -- 4.1. The classical story -- 4.1.1. The t-deformation -- 4.1.2. Quantization -- 5. Examples -- 5.1. The periodic Toda chain -- 5.1.1. The classical system -- 5.1.2. The gauge theory -- 5.1.3. The quantum system -- 5.2. Elliptic Calogero-Moser system -- 5.2.1. The classical system -- 5.2.2. The gauge theory -- 5.2.3. The quantum system -- 5.3. Hitchin system -- 5.3.1. The quantum system and the gauge theory -- 5.4. Relativistic systems -- 6. Superpotential/Yang-Yang function W(a, ε -- q) -- 6.1. Thermodynamic Bethe Ansatz -- 6.2. The examples -- 6.2.1. The elliptic Calogero-Moser system -- 6.2.2. Periodic Toda -- 6.2.3. Ruijsenaars-Schneider model -- 6.2.4. The spectrum of observables -- 6.2.5. On the relation between the type A and the type B models -- 6.2.6. More details and the origin of integral equation -- 6.3. The sum over partitions -- 7. Discussion -- 8. Acknowledgments -- References -- Changing views of quantum field theory S. Weinberg -- Effective Field Theory: Past and Future -- References -- Part B Topical Sessions -- Dynamical Systems (including integrable systems and Hamiltonian stability) -- Almost dense orbit on energy surface V. Kaloshin, K. Zhang, Y. Zheng -- 1. Introduction -- 2. Choice of F -- 3. A proof of existence of a d-dense orbit using a variational problem with constraints -- 3.1. Single resonance case -- 3.2. Double resonance -- 4. Competition between order of resonance and distance to a KAM torus -- References.
Dissipative perturbations of KdV S.B. Kuksin.
Abstract:
The International Congress on Mathematical Physics is the flagship conference in this exciting field. Convening every three years, it gives a survey on the progress achieved in all branches of mathematical physics. It also provides a superb platform to discuss challenges and new ideas. The present volume collects material from the XVIth ICMP which was held in Prague, August 2009, and features most of the plenary lectures and invited lectures in topical sessions as well as information on other parts of the congress program. This volume provides a broad coverage of the field of mathematical physics, from dominantly mathematical subjects to particle physics, condensed matter, and application of mathematical physics methods in various areas such as astrophysics and ecology, amongst others.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Genre:
Electronic Access:
Click to View