
Reliability and Radiation Effects in Compound Semiconductors.
Title:
Reliability and Radiation Effects in Compound Semiconductors.
Author:
Johnston, Allan.
ISBN:
9789814277112
Personal Author:
Physical Description:
1 online resource (376 pages)
Contents:
Contents -- Preface -- Acknowledgments -- 1 Introduction -- 1.1 Basic Considerations -- 1.2 Some Specific Examples -- 1.2.1 Reliability of advanced GaN transistors -- 1.2.2 Radiation damage in light-emitting diodes -- References -- 2 Semiconductor Fundamentals -- 2.1 Fundamental Concepts -- 2.1.1 Bandgap -- 2.1.2 Direct and indirect semiconductors -- 2.1.3 Carrier densities -- 2.1.3.1 Intrinsic carrier density -- 2.1.3.2 Doping -- 2.1.3.3 Extrinisic and intrinsic conduction -- 2.1.4 Carrier recombination -- 2.1.5 Background potential -- 2.1.6 Carrier transport -- 2.2 p-n Junctions -- 2.2.1 Homojunctions -- 2.2.2 Heterojunctions -- 2.2.2.1 Band offset -- 2.2.2.2 Tailoring the bandgap: bandgap engineering -- 2.2.2.3 Schottky barriers -- 2.3 Fabrication and Material -- 2.3.1 GaAs -- 2.3.2 InP -- 2.3.3 SiC -- 2.3.4 GaN -- 2.4 Power Applications -- 2.5 Summary -- References -- 3 Transistor Technologies -- 3.1 Junction Field-Effect Transistors -- 3.1.1 Basic characteristics -- 3.1.2 MESFETs -- 3.2 Modulation-Doped Field-Effect Transistors -- 3.3 MOS Transistors -- 3.3.1 Fundamental concepts -- 3.4 Bipolar Transistors -- 3.4.1 Fundamental concepts -- 3.4.2 Modern silicon and silicon-germanium transistors -- 3.4.3 Other materials -- 3.5 Noise -- 3.6 Summary -- References -- 4 Optoelectronics -- 4.1 Critical Semiconductor Properties for Light Emission -- 4.1.1 Recombination and band structure -- 4.1.2 Recombination processes -- 4.1.3 Quantum efficiency -- 4.2 Material Considerations -- 4.2.1 Solid solutions -- 4.2.1.1 Ternary systems using AlGaAs (GaAs) -- 4.2.1.2 Quaternary systems using InGaAsP (InP) -- 4.2.1.3 Other materials -- 4.2.2 Strained lattices -- 4.3 Light-Emitting Diodes -- 4.3.1 Basic considerations -- 4.3.2 Amphoterically doped LEDs -- 4.3.3 Heterojunction light-emitting diodes -- 4.4 Laser Diodes -- 4.4.1 Basic laser properties.
4.4.2 In-plane semiconductor lasers -- 4.4.3 Vertical cavity semiconductor lasers (VCSELs) -- 4.4.4 Spectral width -- 4.4.4.1 Light-emitting diodes -- 4.4.4.2 In-plane lasers with Fabry-Perot reflectors -- 4.4.4.3 Laser with distributed feedback reflectors -- 4.4.5 Tunable lasers -- 4.5 Detectors -- 4.5.1 Light absorption -- 4.5.2 Basic p-n junction photodetector -- 4.5.3 Avalanche photodiodes -- 4.6 Summary -- References -- 5 Reliability Fundamentals -- 5.1 Reliability Requirements -- 5.1.1 Definitions -- 5.1.2 Properties of probability distributions -- 5.1.2.1 Exponential distribution -- 5.1.2.2 Normal and log-normal distributions -- 5.1.2.3 Weibull distribution -- 5.1.3 Statistical plotting methods -- 5.1.4 Reliability metrics: FIT rate -- 5.2 Acceleration Mechanisms -- 5.2.1 Temperature: activation energy -- 5.2.2 Infant mortality and burn-in -- 5.2.3 Other acceleration factors -- 5.2.3.1 Electric field -- 5.2.3.2 Current density -- 5.2.3.3 Non-constant failure rate -- 5.3 Basic Failure Mechanisms -- 5.3.1 Traps at surfaces -- 5.3.2 Dislocations -- 5.3.3 Contact degradation -- 5.3.4 Electromigration -- 5.4 Analysis of Reliability Test Data -- 5.4.1 Screening and infant mortality -- 5.4.2 Activation energies -- 5.4.3 Sample tests -- 5.5 Summary -- References -- 6 Compound Semiconductor Reliability -- 6.1 MESFETs and HFETs: Mature Technologies -- 6.1.1 Overview -- 6.1.2 Gate sinking -- 6.1.3 Contact degradation -- 6.1.4 Hydrogen poisoning -- 6.1.5 Fluorine dopant passivation -- 6.1.6 Hot-carrier degradation -- 6.1.7 Passivation layer traps -- 6.1.8 Gate-lag effect -- 6.1.9 RF tests of high-power devices for MMIC applications -- 6.2 GaAs Heterojunction Bipolar Transistors -- 6.2.1 Basic considerations -- 6.2.2 Degradation in carbon-doped HBTs -- 6.2.3 Sudden DC gain degradation -- 6.3 SiGe Heterojunction Bipolar Transistors.
6.4 Wide Bandgap Semiconductors: SiC and GaN -- 6.4.1 Silicon carbide -- 6.4.2 Gallium nitride -- 6.5 Summary -- References -- 7 Optoelectronic Device Reliability -- 7.1 Basic Considerations -- 7.1.1 Material properties -- 7.1.1.1 AlGaAs and GaAs -- 7.1.1.2 InGaAsP and InGaAs -- 7.1.1.3 AlGaInP -- 7.1.1.4 GaAsP -- 7.1.1.5 AlGaInN -- 7.1.1.6 InGaN -- 7.1.2 Operating conditions and failure definitions -- 7.1.2.1 Light-emitting diodes -- 7.1.2.2 Laser diodes -- 7.2 Reliability of Light-Emitting Diodes -- 7.2.1 General characteristics -- 7.2.2 Mechanisms -- 7.3 Laser Diode Reliability -- 7.3.1 General characteristics -- 7.3.2 Dark-Line Defects -- 7.3.3 Catastrophic optical damage -- 7.3.4 Facet damage -- 7.3.5 Electrode damage -- 7.3.6 Reliability evaluation -- 7.4 VCSELs -- 7.5 Tunable and Frequency Stabilized Lasers -- 7.5.1 Tunable lasers -- 7.5.2 Frequency-stabilized lasers -- 7.6 Optical Detectors -- 7.6.1 Conventional detectors -- 7.6.2 Avalanche photodetectors -- 7.7 Summary -- References -- 8 Radiation Environments -- 8.1 Particle Types -- 8.1.1 Particles producing permanent damage -- 8.1.2 Particles producing transient effects -- 8.1.2.1 Galactic cosmic rays -- 8.1.2.2 Solar flares -- 8.1.2.3 Terrestrial radiation -- 8.2 Radiation Environments Near the Earth -- 8.3 Energy Distributions in the Earth's Trapped Belts -- 8.4 Radiation Environment in a Geosynchronous Orbit -- 8.5 Protons from Solar Flares -- 8.5.1 Solar activity -- 8.5.2 Specifying proton flare environments -- 8.6 Galactic Cosmic Rays -- 8.7 Heavy Particles in Solar Flares -- 8.8 Terrestrial Environments -- 8.8.1 Alpha particles -- 8.8.2 Atmospheric neutrons -- 8.8.3 Nuclear reactors -- 8.9 Summary -- References -- 9 Interactions of Radiation with Semiconductors -- 9.1 Fundamental Interactions -- 9.1.1 Ionization effects -- 9.1.1.1 Basic considerations.
9.1.1.2 Effects in insulators -- 9.1.2 Particle scattering -- 9.1.3 Displacement damage -- 9.1.3.1 Electron displacement damage -- 9.1.3.2 Displacement damage from protons and heavy ions -- 9.2 Effects of Damage on Semiconductor Properties -- 9.2.1 Lifetime damage -- 9.2.2 Carrier removal -- 9.2.3 Mobility -- 9.3 Radiation Effects in Heterostructures -- 9.4 Energy Dependence of Displacement Damage -- 9.4.1 Displacement energy comparisons -- 9.4.2 Discrepancies between NIEL and experiments -- 9.4.3 Annealing -- 9.5 Summary -- References -- 10 Displacement Damage in Compound Semiconductors -- 10.1 JFETs -- 10.2 HFETs -- 10.3 Advanced Bipolar Transistors -- 10.4 Wide-Bandgap Devices -- 10.4.1 Silicon carbide -- 10.4.1.1 SiC MOSFETs -- 10.4.1.2 Schottky barrier diodes -- 10.4.2 Gallium nitride -- 10.5 Summary -- References -- 11 Displacement Damage in Optoelectronic Devices -- 11.1 Light-Emitting Diodes with Amphoteric Doping -- 11.1.1 Properties affected by radiation damage -- 11.1.2 Damage linearity -- 11.1.3 Annealing -- 11.2 Heterojunction LEDs -- 11.3 Edge-Emitting Laser Diodes -- 11.3.1 Fundamental effects -- 11.3.2 Monitor diode and operational margins -- 11.4 VCSELs -- 11.5 Photodetectors -- 11.5.1 Conventional photodetectors -- 11.5.2 Avalanche photodiodes -- 11.6 Summary -- References -- 12 Radiation Damage in Optocouplers -- 12.1 Introduction -- 12.2 Damage in Basic Phototransistor Optocouplers -- 12.2.1 Basic response -- 12.2.2 Phototransistor effects -- 12.2.3 Effect of different particle types -- 12.2.4 Temperature effects -- 12.2.5 Production lot variability -- 12.3 Optocouplers with High-Speed Internal Amplifiers -- 12.3.1 Operational characteristics -- 12.4 Optocouplers with MOSFET Output Stages -- 12.5 Summary -- References -- 13 Effects from Single Particles -- 13.1 Basic Concepts -- 13.1.1 Charge deposition.
13.1.2 Charge density produced by particles in space -- 13.1.3 Charge collection -- 13.1.4 Critical charge -- 13.2 Single-Event Upset in Logic Devices -- 13.3 Optocouplers -- 13.3.1 Basic design and sensitivity -- 13.3.2 Transients from high-energy particles -- 13.3.2.1 Heavy ions -- 13.3.2.2 Protons -- 13.4 Optical Receivers -- 13.4.1 Basic issues -- 13.4.2 Optical receiver radiation tests -- 13.5 Single-Event Upset Effects from Neutrons -- 13.6 Permanent Damage from Particle-Induced Transients -- 13.7 Summary -- References -- Index.
Abstract:
This book discusses reliability and radiation effects in compound semiconductors, which have evolved rapidly during the last 15 years. Johnston's perspective in the book focuses on high-reliability applications in space, but his discussion of reliability is applicable to high reliability terrestrial applications as well. The book is important because there are new reliability mechanisms present in compound semiconductors that have produced a great deal of confusion. They are complex, and appear to be major stumbling blocks in the application of these types of devices. Many of the reliability problems that were prominent research topics five to ten years ago have been solved, and the reliability of many of these devices has been improved to the level where they can be used for ten years or more with low failure rates. There is also considerable confusion about the way that space radiation affects compound semiconductors. Some optoelectronic devices are so sensitive to damage in space that they are very difficult to use, and have caused failures in operating spacecraft. Others are far more robust. Johnston admirably clarifies the reasons for these differences in this landmark book.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Genre:
Electronic Access:
Click to View