Cover image for Stochastic Global Optimization : Techniques and Applications in Chemical Engineering.
Stochastic Global Optimization : Techniques and Applications in Chemical Engineering.
Title:
Stochastic Global Optimization : Techniques and Applications in Chemical Engineering.
Author:
Rangaiah, Gade Pandu.
ISBN:
9789814299213
Personal Author:
Physical Description:
1 online resource (722 pages)
Series:
Advances in Process Systems Engineering
Contents:
CONTENTS -- Preface -- Chapter 1 Introduction Gade Pandu Rangaiah -- 1. Optimization in Chemical Engineering -- 2. Examples Requiring Global Optimization -- 2.1. Modified Himmelblau function -- 2.2. Ellipsoid and hyperboloid intersection -- 2.3. Reactor design example -- 2.4. Stepped paraboloid function -- 3. Global Optimization Techniques -- 4. Scope and Organization of the Book -- References -- Exercises -- Chapter 2 Formulation and Illustration of Luus-Jaakola Optimization Procedure Rein Luus -- 1. Introduction -- 2. LJ Optimization Procedure -- 2.1. Example of an optimization problem-diet problem with 7 foods -- 2.2. Example 2-Alkylation process optimization -- 2.3. Example 3 -Gibbs free energy minimization -- 3. Handling Equality Constraints -- 3.1. Example 4 -Geometric problem -- 3.2. Example 5 -Design of columns -- 4. Effect of Parameters -- 4.1. Example 7 -Minimization of Rosenbrock function -- 4.2. Example 8 -Maximization of the Shubert function -- 5. Conclusions -- References -- Exercises -- Chapter 3 Adaptive Random Search and Simulated Annealing Optimizers: Algorithms and Application Issues Jacek M. Je˙zowski, Grzegorz Poplewski and Roman Bochenek -- 1. Introduction and Motivation -- 2. Adaptive Random Search Approach -- 2.1. Introduction -- 3. Simulated Annealing with Simplex Method -- 3.1. Introduction -- 3.2. SA-S/1 algorithm -- 3.3. Important mechanisms of SA-S/1 algorithm -- 3.3.1. Initial simplex generation -- 3.3.2. Determination of the initial temperature -- 3.3.3. Acceptance criterion -- 3.3.4. Cooling scheme-Temperature decrease -- 3.3.5. Equilibrium criterion -- 3.3.6. Stopping (convergence) criterion -- 4. Tests, Control Parameters Settings and Important Application Issues -- 4.1. Tests-Test problems and results -- 4.2. Parameter settings for SA-S/1 algorithm -- 4.2.1. Cooling scheme -- 4.2.2. Influence of parameter INV.

4.2.3. Influence of parameter K in the equilibrium criterion -- 4.2.4. Influence of parameter γ in the adaptive cooling scheme -- 4.2.5. Influence of parameter T min -- 4.3. Results and analysis of tests for LJ-MM algorithm -- 4.4. Selected application issues -- 4.4.1. Dealing with inequality constraints -- 4.4.2. Dealing with equality constraints -- 4.5. Problem size effect -- 5. Summary -- Symbols -- Superscripts -- Acronyms -- References -- Exercises -- Appendix A -- Chapter 4 Genetic Algorithms in Process Engineering: Developments and Implementation Issues Abdunnaser Younes, Ali Elkamel and Shawki Areibi -- 1. Introduction -- 2. Review of Chemical Engineering Applications -- 3. The Basic Genetic Algorithm -- 3.1. Encoding -- 3.2. Fitness evaluation -- 3.3. Initial population -- 3.4. Selection -- 3.4.1. Fitness proportionate selection -- 3.4.2. Other selection schemes -- 3.5. Crossover -- 3.6. Mutation -- 3.7. Theoretical aspects -- 3.8. General characteristics -- 3.8.1. Advantages -- 3.8.2. Disadvantages -- 3.9. When should we use GAs? -- 4. Implementation Issues -- 4.1. Primary decisions -- 4.1.1. Encoding -- 4.2. Complex evaluations -- 4.2.1. Reducing the total number of evaluations -- 4.2.2. Reducing the cost of individual evaluation -- 4.3. Constraint handling -- 4.4. Genetic operators and parameters -- 4.4.1. Genetic operators -- 4.4.2. Parameter tuning -- 4.4.3. Termination criteria -- 5. Advanced Topics -- 5.1. Maintaining population diversity -- 5.1.1. Adaptive parameter setting -- 5.1.2. Island-based genetic algorithms -- 5.2. Hybridization -- 6. Conclusions -- References -- Chapter 5 Tabu Search for Global Optimization of Problems Having Continuous Variables Sim Mong Kai, Gade Pandu Rangaiah and Mekapati Srinivas -- 1. Introduction -- 2. Tabu Search with Quasi-Newton (TS-QN) Method.

3. Application of TS-QN to the Modified Himmelblau Function -- 4. TS Methods for Global Optimization of Continuous Problems -- 4.1. Multi-objective TS (MOTS) -- 4.2. Use of TL in other stochastic methods -- 4.3. Other issues/developments -- 5. TS Software -- 6. Chemical Engineering Applications of TS -- 7. Features of Tabu Search -- 8. Short Term Memory (STM) -- 9. Aspiration Criterion -- 10. Candidate List -- 11. Long Term Memory (LTM) -- 12. Intensification -- 12.1. Diversification -- 12.2. Path relinking -- 13. Conclusions -- References -- Chapter 6 Differential Evolution: Method, Developments and Chemical Engineering Applications Chen Shaoqiang, Gade Pandu Rangaiah and Mekapati Srinivas -- 1. Introduction -- 2. Description of DE -- 3. Developments of DE -- 3.1. Initialization -- 3.2. Mutation operation -- 3.3. Crossover -- 3.4. Selection -- 3.5. Hybrid methods and new generation -- 4. Chemical Engineering Applications -- 5. Conclusions -- References -- 6. Exercises -- Chapter 7 Ant Colony Optimization: Details of Algorithms Suitable for Process Engineering V. K. Jayaraman, P. S. Shelokar, P. Shingade, V. Pote, R. Baskar and B. D. Kulkarni -- 1. Introduction -- 2. ACO for Continuous Function Optimization -- 3. Continuous Ant Colony Optimization Algorithm (CACO) -- 3.1. Local search -- 3.2. Global search -- 3.3. Pheromone evaporation -- 3.4. Steps in CACO algorithm -- 4. ACO Algorithm for Combinatorial Optimization -- 5. Scheduling of Serial Multiproduct Batch Plant -- 5.1. UIS policy -- 5.2. ZW policy -- 6. ACO Algorithm for Scheduling of SerialMultiproduct Batch Plant -- 7. ACO for Multiobjective Scheduling of SerialMultiproduct Batch Plant -- 7.1. Multiobjective optimization (MOO) problem definition -- 8. ACO for Knowledge Discovery in Process Data -- 9. ACO for Data Clustering -- 10. ACO Algorithm for Rule Based Classification.

11. Results and Discussion -- 11.1. CACO for unconstrained continuous functions -- 12. CACO for Constrained Continuous Functions -- 12.1. Scheduling of batch processes -- 12.2. ACO for data clustering -- 13. Conclusions -- Abbreviations -- References -- Acknowledgement -- Chapter 8 Particle Swarm Optimization for Solving NLP and MINLP in Chemical Engineering Bassem Jarboui, Houda Derbel, Mansour Eddaly and Patrick Siarry -- 1. Introduction -- 2. The Initial Version of the PSO Algorithm -- 3. Simple Modifications to the Original PSO -- 3.1. Maximum velocity -- 3.2. Inertia weight -- 3.3. Constriction factor -- 3.4. Stopping criteria -- 4. Neighborhood Selection Strategies -- 4.1. Global best / Local best PSO -- 5. Extensions of Basic PSO -- 6. Multi-Start PSO Algorithms -- 7. Gravity Center Technique -- 8. Application of PSO to Mixed-Integer Nonlinear Programming (MINLP) -- 8.1. Applications to constrained problems -- 8.2. Applications in chemical engineering -- 9. Application of PSO to the NLP and MINLP Problems -- 9.1. Initialization -- 9.2. Handling discrete variables and bound checking -- 9.3. Handling constraints -- 10. Numerical Results -- 11. Conclusion and Future Directions -- References -- Chapter 9 An Introduction to the Harmony Search Algorithm Gordon Ingram and Tonghua Zhang -- 1. Introduction -- 2. Applications of the Harmony Search -- 2.1. Selected applications broadly related to Chemical Engineering -- 2.2. Chemical Engineering applications -- 3. Basic Harmony Search Algorithm -- 3.1. Basic harmony search for continuous decision variables -- Specifying the algorithm parameters -- Initializing harmony memory -- Improvising a new harmony -- Updating harmony memory -- Termination criterion -- 3.2. The harmony search approach compared with other global optimization methods.

3.3. Basic harmony search for discrete and mixed variable problems -- 3.4. Stochastic partial derivative for discrete variables -- 3.5. Selection of algorithm parameter values -- 3.6. Handling equality and inequality constraints -- 3.7. Performance of the harmony search compared to other SGO methods -- 4. Variations on the Basic Harmony Search Algorithm -- 4.1. Minor variations on the basic harmony search -- Harmony memory initialization -- Sorting harmony memory -- Termination criteria -- 4.2. Techniques involving parameter adaptation -- Variable HMCR and PAR -- Variable PAR and bandwidth -- Tightening of variable bounds -- 4.3. Techniques that modify the HS operators -- Biased selection -- Pitch adjusting replaced by global best solution -- Pitch adjusting replaced by mutation -- Biased pitch adjusting -- Random playing replaced by simulated annealing -- Ensemble consideration for new harmonies -- Sequential Quadratic Programming (SQP) refinement of new harmonies -- Special training of elite harmonies -- Generation of multiple harmonies -- Chaotic harmonies -- Prevention of overlapping harmonies -- 4.4. Specialized applications and hybrid algorithms -- 4.5. Reflection on the HS variations -- 5. Harmony Search Software -- 6. Illustrative Example -- 7. Conclusions and Opportunities for Further Research -- Acknowledgment -- References -- Exercises -- Chapter 10 Meta-Heuristics: Evaluation and Reporting Techniques Abdunnaser Younes, Ali Elkamel and Shawki Areibi -- 1. Introduction -- 2. General Considerations -- 2.1. Performance measures -- 2.1.1. Solution quality -- 2.1.2. Algorithm efficiency -- 2.1.3. Quality-efficiency trade-off -- 2.2. Algorithm robustness -- 2.3. Effects of stochastic sampling -- 2.4. Parameter tuning -- 3. Test Problems -- 3.1. Classification of test problems -- 3.2. Selecting the test suite.

4. Experiment Design and Parameter Settings.
Abstract:
Optimization has played a key role in the design, planning and operation of chemical and related processes, for several decades. Global optimization has been receiving considerable attention in the past two decades. Of the two types of techniques for global optimization, stochastic global optimization is applicable to any type of problems having non-differentiable functions, discrete variables and/or continuous variables. It, thus, shows significant promise and potential for process optimization. So far, there are no books focusing on stochastic global optimization and its applications in chemical engineering. "Stochastic Global Optimization" - a monograph with contributions by leading researchers in the area - bridges the gap in this subject, with the aim of highlighting and popularizing stochastic global optimization techniques for chemical engineering applications. The book, with 19 chapters in all, is broadly categorized into two sections that extensively cover the techniques and the chemical engineering applications.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: