
Antiplane Motions of Piezoceramics and Acoustic Wave Devices.
Title:
Antiplane Motions of Piezoceramics and Acoustic Wave Devices.
Author:
Yang, Jiashi.
ISBN:
9789814291453
Personal Author:
Physical Description:
1 online resource (340 pages)
Contents:
Contents -- Preface -- Chapter 1: Basic Equations -- 1.1 Equations of Linear Piezoelectricity -- 1.2 Cylindrical Coordinates -- 1.3 Matrix Notation -- 1.4 Constitutive Relations of Polarized Ceramics -- 1.5 Antiplane Problems -- 1.6 Bleustein's Formulation -- 1.7 A Static General Solution in Polar Coordinates -- 1.8 A Time-harmonic General Solution in Polar Coordinates -- 1.9 Boundary Integral Equation Formulation -- Chapter 2: Static Problems -- 2.1 A Surface Distribution of Electric Potential -- 2.2 Shear of a Plate -- 2.2.1. Shorted electrodes -- 2.2.2. Open electrodes -- 2.2.3. Electromechanical coupling coefficient -- 2.3 Capacitance of a Plate -- 2.3.1. Free surfaces -- 2.3.2. Clamped surfaces -- 2.3.3. Electromechanical coupling coefficient -- 2.4 Capacitance of a Circular Cylindrical Shell -- 2.5 A Circular Hole under Axisymmetric Loads -- 2.6 A Circular Hole under Shear -- 2.7 A Circular Cylinder in an Electric Field -- 2.8 A Screw Dislocation -- 2.9 A Crack -- Chapter 3: Simple Dynamic Problems -- 3.1 Plane Wave Propagation -- 3.2 Reflection at a Boundary -- 3.3 Reflection and Refraction at an Interface -- 3.4 Scattering by a Circular Cylinder -- 3.5 A Moving Dislocation -- 3.6 A Moving Crack -- Chapter 4: Surface and Interface Waves -- 4.1 Surface Waves over a Half-space -- 4.1.1. A half-space with an electroded surface -- 4.1.2. A half-space with an unelectroded surface -- 4.2 A Half-space with a Thin Film -- 4.2.1. Governing equations -- 4.2.2. A half-space with an electroded surface -- 4.2.3. A half-space with an unelectroded surface -- 4.3 An FGM Half-space -- 4.3.1. Governing equations -- 4.3.2. Fields in different regions -- 4.3.3. An unelectroded surface -- 4.3.4. An electroded surface -- 4.4 A Half-space in Contact with a Fluid -- 4.4.1. Governing equations and fields -- 4.4.2. A half-space with an electroded surface.
4.4.3. A half-space with an unelectroded surface -- 4.5 Interface Waves -- 4.5.1. Governing equations and fields -- 4.5.2. An electroded interface -- 4.5.3. An unelectroded interface -- 4.6 An Imperfectly Bonded Interface -- 4.6.1. Governing equations and fields -- 4.6.2. An electroded interface -- 4.6.3. An unelectroded interface -- 4.7 An Interface between Two FGM Half-spaces -- 4.7.1. Fields in the lower half-space -- 4.7.2. Fields in the upper half-space -- 4.7.3. An electroded interface -- 4.7.4. An unelectroded interface -- 4.8 Gap Waves between Two Half-spaces -- 4.8.1. A gap between two half-spaces of different ceramics -- 4.8.2. A gap between two half-spaces of the same material -- 4.9 Waves over a Circular Cylindrical Surface -- Chapter 5: Waves in Plates -- 5.1 An Electroded Plate -- 5.1.1. Antisymmetric waves -- 5.1.2. Symmetric waves -- 5.1.3. Numerical results -- 5.2 An Unelectroded Plate -- 5.2.1. Antisymmetric waves -- 5.2.2. Symmetric waves -- 5.3 A Plate with Unattached Electrodes -- 5.3.1. Governing equations and fields -- 5.3.2. Dispersion relation -- 5.3.3. Numerical results -- 5.4 A Plate with Thin Films -- 5.4.1. Governing equations -- 5.4.2. Antisymmetric waves -- 5.4.3. Symmetric waves -- 5.5 Effect of Film Stiffness -- 5.5.1. An unelectroded plate -- 5.5.2. An electroded plate -- 5.6 A Plate in Contact with Fluids -- 5.6.1. Governing equations and fields -- 5.6.2. Antisymmetric waves -- 5.6.3. Symmetric waves -- 5.7 A Plate with Fluids under Unattached Electrodes -- 5.8 Waves through a Joint between Two Semi-infinite Plates -- 5.8.1. The left half -- 5.8.2. The right half -- 5.8.3. Continuity conditions -- 5.8.4. Numerical results -- 5.9 Trapped Modes in an Inhomogeneous Plate -- 5.9.1. Governing equations and fields -- 5.9.2. Continuity conditions and frequency equation -- 5.9.3. Numerical results.
5.10 A Partially Electroded Plate -- 5.10.1. Waves in an unbounded, unelectroded plate -- 5.10.2. Waves in an unbounded, electroded plate -- 5.10.3. Bechmann's number -- 5.11 Multi-sectioned Plates: Phononic Crystals -- 5.11.1. Governing equations -- 5.11.3. Numerical results -- 5.11.2. Solution -- 5.11.4. Modes in a periodic plate -- Chapter 6: Waves in a Layer on a Substrate -- 6.1 A Metal Plate on a Ceramic Half-space -- 6.2 A Dielectric Plate on a Ceramic Half-space -- 6.3 An FGM Ceramic Plate on an Elastic Half-space -- 6.3.1. Governing equations -- 6.3.2. Fields in different regions -- 6.3.3. An unelectroded plate -- 6.3.4. An electroded plate -- 6.4 A Plate Imperfectly Bonded to a Half-space -- 6.5 A Plate Imperfectly Bonded to Two Half-spaces -- 6.5.1. Governing equations and fields in different regions -- 6.5.2. An electroded plate -- 6.5.3. An unelectroded plate -- 6.6 Gap Waves between a Plate and a Half-space -- 6.6.1. Governing equations and fields -- 6.6.2. Dispersion relations -- 6.7 A Plate between a Half-Space and a Fluid -- Chapter 7: Free Vibrations in Cartesian Coordinates -- 7.1 Thickness-shear in a Plate -- 7.2 Thickness-shear in a Plate with Unattached Electrodes -- 7.3 Thickness-shear in a Plate with Thin Films -- 7.4 Thickness-shear in a Plate with Imperfectly Bonded Films -- 7.5 Thickness-shear in a Layered Plate with an Imperfect 194 Interface -- 7.6 Edge Modes in a Semi-infinite Plate -- 7.7 Mass Sensitivity of Edge Modes -- 7.8 Modes in a Rectangular Plate -- 7.8.1. An unelectroded plate -- 7.8.2. An electroded plate -- 7.9 A Rectangular Plate with Thin Films -- 7.9.1. Unelectroded plates -- 7.9.2. Electroded plates -- Chapter 8: Free Vibrations in Polar Coordinates -- 8.1 Thickness-shear in a Circular Cylinder -- 8.1.1. Clamped and electroded surfaces -- 8.1.2. Free and unelectroded surfaces.
8.1.3. Free and electroded surfaces -- 8.2 A Circular Cylinder with Unattached Electrodes -- 8.3 A Wedge -- 8.4 A Circular Cylindrical Panel -- 8.4.1. Governing equations and fields -- 8.4.2. An unelectroded transducer -- 8.4.3. An electroded transducer -- 8.4.4. Numerical results -- 8.5 An Elliptical Cylinder -- Chapter 9: Forced Vibrations in Cartesian Coordinates -- 9.1 Thickness-shear in a Plate Driven by a Voltage -- 9.2 Thickness-shear in a Plate Driven by Traction: A Generator -- 9.3 Thickness-twist in a Plate Driven by Traction: A Generator -- 9.3.1. Governing equations -- 9.3.2. Series solution -- 9.3.3. Numerical results -- 9.4 A Plate Transformer -- 9.4.1. Governing equations -- 9.4.2. Series solution -- 9.4.3. Numerical results -- 9.5 A Plate with Nonuniform Electrodes -- 9.5.1. Governing equations and solution -- 9.5.2. An example -- 9.6 A Multilayered Plate -- 9.7 Power Transmission through an Elastic Plate -- 9.7.1. Governing equations -- 9.7.2. Series solution -- 9.7.3. Numerical results -- 9.8 A Transducer on an Elastic Plate -- 9.8.1. Governing equations -- 9.8.2. Series solution -- 9.8.3. Numerical results -- 9.9 Two Transducers on an Elastic Plate -- 9.9.1. Governing equations -- 9.9.2. Fields in different regions -- 9.9.3. Boundary, continuity and circuit conditions -- 9.10 A Transducer on an Elastic Half-space -- 9.10.1. Governing equations -- 9.10.2. Fields in different regions -- 9.10.3. Boundary and continuity conditions -- Chapter 10: Forced Vibrations in Polar Coordinates -- 10.1 A Shell Generator -- 10.2 A Shell Transformer -- 10.2.1. Governing equations -- 10.2.2. Solution -- 10.2.3. Numerical results -- 10.3 Power Transmission through an Elastic Shell -- 10.3.1. Governing equations -- 10.3.2. Solution -- 10.3.3. Numerical results -- 10.4 A Circular Cylindrical Panel -- 10.5 Power Transmission with Finite Transducers.
10.5.1. Governing equations -- 10.5.2. Fields in different regions -- 10.5.3. Boundary, continuity and circuit conditions -- 10.5.4. Numerical results and discussion -- 10.6 A Transducer on an Elastic Shell -- 10.6.1. Governing equations and fields -- 10.6.2. Boundary and continuity conditions -- 10.6.3. Numerical results -- 10.7 Two Transducers on an Elastic Shell -- 10.7.1. Governing equations and fields -- 10.7.2. Boundary, continuity and circuit conditions -- 10.7.3. Numerical results -- 10.8 A Circular Cylinder with Unattached Electrodes -- 10.9 A Multilayered Shell -- 10.9.1. Governing equations -- 10.9.2. Solution -- 10.9.3. Numerical results -- References -- Appendix 1: Notation -- Appendix 2: Material Constants -- Index.
Abstract:
This book focuses on dynamic antiplane problems of piezoelectric ceramics. It presents relatively simple theoretical solutions to many such problems and attempts to use these solutions to demonstrate the operation and design of several acoustic wave devices. Some of the solutions are able to show the underlying physics clearly without the need for numerical computation. The problems treated include the propagation of plate waves, surface waves, interface waves, love waves, gap waves, and vibrations of finite bodies of various shapes with applications in resonators, mass sensors, fluid sensors, interface sensors, phononic crystals, piezoelectric generators or power harvesters, piezoelectric transformers, power or signal transmission through an elastic wall, and acoustic wave excitation and detection for non-destructive evaluation.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View