Cover image for Computability in Context : Computation and Logic in the Real World.
Computability in Context : Computation and Logic in the Real World.
Title:
Computability in Context : Computation and Logic in the Real World.
Author:
Cooper, S. Barry.
ISBN:
9781848162778
Personal Author:
Physical Description:
1 online resource (419 pages)
Contents:
Contents -- Preface -- 1. Computation, Information, and the Arrow of Time P. Adriaans & P. van Emde Boas -- 1.1. Introduction -- 1.2. A Formal Framework: Meta-computational Space -- 1.3. Time Symmetries in Meta-computational Space -- 1.4. The Interplay of Computation and Information -- 1.5. Discussion -- 1.6. Conclusion -- References -- 2. The Isomorphism Conjecture for NP M. Agrawal -- Contents -- 2.1. Introduction -- 2.2. Definitions -- 2.3. Formulation and Early Investigations -- 2.4. A Counter Conjecture and Relativizations -- 2.5. The Conjectures for Other Classes -- 2.6. The Conjectures for Other Reducibilities -- 2.6.1. Restricting the input head movement -- 2.6.2. Reducing space -- 2.6.3. Reducing depth -- 2.6.4. Discussion -- 2.7. A New Conjecture -- 2.8. Future Directions -- References -- 3. The Ershov Hierarchy M. M. Arslanov -- Contents -- 3.1. The Hierarchy of Sets -- 3.1.1. The finite levels of the Ershov hierarchy -- 3.1.2. The properties of productiveness and creativeness on the n-c.e. sets -- 3.1.3. The class of the !-c.e. sets -- 3.1.4. A description of the 0 2-sets using constructive ordi- nals -- 3.1.5. The infinite levels of the Ershov hierarchy -- 3.1.6. Levels of the Ershov hierarchy containing Turing jumps -- 3.2. The Turing Degrees of the n-c.e. Sets -- 3.2.1. The class of the n-c.e. degrees -- 3.2.2. The degrees of the n-c.e. sets in the n-CEA hierarchy -- 3.2.3. The relative arrangement of the n-c.e. degrees -- 3.2.4. The cupping, capping and density properties -- 3.2.5. Splitting properties -- 3.2.6. Isolated d-c.e. degrees -- 3.2.7. A generalization -- 3.2.8. Further results and open questions -- References -- 4. Complexity and Approximation in Reoptimization G. Ausiello, V. Bonifaci, & B. Escoffer -- Contents -- 4.1. Introduction -- 4.2. Basic Definitions and Results.

4.3. Reoptimization of NP-hard Optimization Problem -- 4.3.1. General properties -- 4.3.1.1. Hereditary problems -- 4.3.1.2. Unweighted problems -- 4.3.1.3. Hardness of reoptimization -- 4.3.2. Results on some particular problems -- 4.3.2.1. Min Steiner Tree -- 4.3.2.2. Scheduling -- 4.3.2.3. Max Knapsack -- 4.4. Reoptimization of Vehicle Routing Problems -- 4.4.1. The Minimum Traveling Salesman Problem -- 4.4.1.1. The general case -- 4.4.1.2. Minimum Metric TSP -- 4.4.1.3. Minimum Asymmetric TSP -- 4.4.2. The Maximum Traveling Salesman Problem -- 4.4.2.1. Maximum TSP -- 4.4.2.2. Maximum Metric TSP -- 4.4.3. The Minimum Latency Problem -- 4.5. Concluding Remarks -- References -- 5. Definability in the Real Universe S. B. Cooper -- Contents -- 5.1. Introduction -- 5.2. Computability versus Descriptions -- 5.3. Turing's Model and Incomputability -- 5.4. The Real Universe as Discipline Problem -- 5.5. A Dissenting Voice . . . -- 5.6. The Quantum Challenge -- 5.7. Schrödinger's Lost States, and the Many-Worlds Interpretation -- 5.8. Back in the One World . . . -- 5.9. The Challenge from Emergence -- 5.10. A Test for Emergence -- 5.11. Definability the Key Concept -- 5.12. The Challenge of Modelling Mentality -- 5.13. Connectionist Models to the Rescue? -- 5.14. Definability in What Structure? -- 5.15. The Turing Landscape, Causality and Emergence . . . -- 5.16. An Informational Universe, and Hartley Rogers' Programme -- References -- 6. HF-Computability Y. L. Ershov, V. G. Puzarenko, & A. I. Stukachev -- Contents -- 6.1. Introduction -- 6.2. HF-Logic -- 6.3. -Subsets on Hereditarily Finite Superstructures -- 6.4. Reducibilities on Hereditarily Finite Superstructures -- 6.5. Descriptive Properties on Hereditarily Finite Superstructures -- 6.6. -Definability of Structures -- 6.6.1. -Definability on structures: general properties.

6.6.2. -Definability on special structures -- 6.6.3. Special cases of -definability -- 6.7. Semilattices of Degrees of Presentability of Structures -- 6.8. Closely Related Approaches to Generalized Computability -- 6.8.1. BSS-computability -- 6.8.2. Search computability -- 6.8.3. Montague computability -- 6.9. KPU. Examples of Admissible Structures -- 6.9.1. Elements of KPU -- 6.9.2. -subsets -- 6.9.3. Gandy's Theorem -- Acknowledgements -- References -- 7. The Mathematics of Computing between Logic and Physics G. Longo & T. Paul -- Contents -- 7.1. Introduction -- 7.2. Computability and Continuity -- 7.3. Mathematical Computability and the Reality of Physics -- 7.4. From the Principle of Least Action to the Quantum Theory of Fields -- 7.5. Chaotic Determinism and Predictability -- 7.6. Return to Computability in Mathematics -- 7.7. Non-determinism? -- 7.8. The Case of Quantum Mechanics -- 7.9. Randomness, Between Unpredictability and Chaos -- 7.10. General Conclusions -- Acknowledgements -- References -- 8. Liquid State Machines: Motivation, Theory, and Applications W. Maass -- Contents -- 8.1. Introduction -- 8.2. Why Turing Machines are Not Useful for Many Important Computational Tasks -- 8.3. Formal Definition and Theory of Liquid State Machines -- 8.4. Applications -- 8.5. Discussion -- Acknowledgements -- References -- 9. Experiments on an Internal Approach to Typed Algorithms in Analysis D. Normann -- Contents -- 9.1. Introduction -- 9.1.1. Classical computability theory -- 9.1.2. Generalizing computability theory -- 9.1.3. Generalizing finiteness -- 9.1.4. Computability at higher types -- 9.2. Computational Analysis -- 9.2.1. Type two enumerability -- 9.2.2. Domain representability -- 9.2.3. Quotients of countably based spaces -- 9.2.4. A purely internal approach? -- 9.3. Some Typed Hierarchies of Limit Spaces.

9.3.1. Total versus partial functionals -- 9.3.2. The problem with density -- 9.3.3. Probabilistic projections -- 9.4. Domain Representations and Density -- Acknowledgements -- References -- 10. Recursive Functions: An Archeological Look P. Odifreddi -- Contents -- 10.1. Types of Recursion -- 10.1.1. Iteration -- 10.1.2. Primitive recursion -- 10.1.3. Primitive recursion with parameters -- 10.1.4. Course-of-value recursion -- 10.2. The First Recursion Theorem -- 10.2.1. Differentiable functions -- 10.2.2. Contractions -- 10.2.3. Continuous functions -- 10.3. The Second Recursion Theorem -- 10.3.1. The diagonal method -- 10.3.2. The diagonal -- 10.3.3. The switching function -- 10.3.4. Selfreference -- References -- 11. Reverse Mathematics and Well-ordering Principles M. Rathjen & A. Weiermann -- Contents -- 11.1. Introduction -- 11.2. The Ordering 'X0 -- 11.4. Main Theorem -- 11.4.1. Deduction chains in !-logic -- 11.4.2. The infinitary calculus 1 1-CRQ 1 -- 11.5. Ramified Analysis RA1 -- 11.5.1. Finishing the proof of the main theorem -- 11.6. Finishing the Proof of Theorem 11.1.3 -- 11.7. Prospectus -- References -- 12. Discrete Transfinite Computation Models P. D. Welch -- Contents -- 12.1. Introduction -- 12.1.1. The contents -- 12.1.2. Argument -- 12.2. Computation on Integers -- 12.2.1. Transcending the finite through stacking Turing ma- chines -- 12.2.1.1. General relativistic models: Malament-Hogarth Spacetimes -- 12.2.1.2. Etesi & Németi's rotating black hole model -- 12.2.1.3. Hogarth's arithmetically deciding spacetime regions -- 12.2.1.4. A universal constant upper bound for any computation -- 12.2.2. Allowing supertasks -- 12.2.2.1. Punch-hole machines -- 12.2.2.2. Infinite Time Register Machines (ITRMs) -- 12.2.2.3. Infinite Time Turing Machines (ITTMs) -- 12.3. Computation on Reals -- 12.3.1. ITTM computations on reals.

12.4. Computation on Ordinals, and Ordinal Length Machines -- 12.4.1. Ordinal length tapes -- 12.4.1.1. -length tapes -- 12.4.2. Ordinal Register Machines -- 12.5. Theoretical Machine Strength -- Acknowledgements -- References.
Abstract:
Computability has played a crucial role in mathematics and computer science, leading to the discovery, understanding and classification of decidable/undecidable problems, paving the way for the modern computer era, and affecting deeply our view of the world. Recent new paradigms of computation, based on biological and physical models, address in a radically new way questions of efficiency and challenge assumptions about the so-called Turing barrier. This volume addresses various aspects of the ways computability and theoretical computer science enable scientists and philosophers to deal with mathematical and real-world issues, covering problems related to logic, mathematics, physical processes, real computation and learning theory. At the same time it will focus on different ways in which computability emerges from the real world, and how this affects our way of thinking about everyday computational issues. The list of contributors includes: S Abramsky, P Adriaans, M Agrawal, M Arslanov, G Ausiello, J Diaz, Y Ershov, G Longo, W Maass, I Nemeti, A Nerode, D Normann, G Odifreddi, M Rathjen, G Rozenberg, M Vardi, and P Welch.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: