Cover image for Intrusion Detection : A Machine Learning Approach.
Intrusion Detection : A Machine Learning Approach.
Title:
Intrusion Detection : A Machine Learning Approach.
Author:
Tsai, Jeffrey J.P.
ISBN:
9781848164482
Personal Author:
Physical Description:
1 online resource (185 pages)
Series:
Series in Electrical and Computer Engineering
Contents:
Preface -- Contents -- Chapter 1 Introduction -- 1.1. Background -- 1.2. Existing Problems -- 1.2.1. Alarm management -- 1.2.2. Performance maintenance -- Chapter 2 Attacks and Countermeasures in Computer Security -- 2.1. General Security Objectives -- 2.1.1. Accountability -- 2.1.2. Assurance -- 2.1.3. Authentication -- 2.1.4. Authorization -- 2.1.5. Availability -- 2.1.6. Confidentiality -- 2.1.7. Integrity -- 2.1.8. Non-repudiation -- 2.2. Types of Attacks -- 2.2.1. Attacks against availability -- 2.2.2. Attacks against confidentiality -- 2.2.3. Attacks against integrity -- 2.2.4. Attacks against miscellaneous security objectives -- 2.3. Countermeasures of Attacks -- 2.3.1. Authentication -- 2.3.2. Access control -- 2.3.3. Audit and intrusion detection -- 2.3.4. Extrusion detection -- 2.3.5. Cryptography -- 2.3.6. Firewall -- 2.3.7. Anti-virus software -- Chapter 3 Machine Learning Methods -- 3.1. Background -- 3.2. Concept Learning -- 3.3. Decision Tree -- 3.4. Neural Networks -- 3.5. Bayesian Learning -- 3.6. Genetic Algorithms and Genetic Programming -- 3.7. Instance-Based Learning -- 3.8. Inductive Logic Programming -- 3.9. Analytical Learning -- 3.10. Inductive and Analytical Learning -- 3.11. Reinforcement Learning -- 3.12. Ensemble Learning -- 3.13. Multiple Instance Learning -- 3.14. Unsupervised Learning -- 3.15. Semi-Supervised Learning -- 3.16. Support Vector Machines -- Chapter 4 Intrusion Detection System -- 4.1. Background -- 4.1.1. Security defense in depth -- 4.1.2. A brief history of intrusion detection -- 4.1.3. Classification of intrusion detection system -- 4.1.4. Standardization efforts -- 4.1.5. General model of intrusion detection system -- 4.2. Available Audit Data -- 4.2.1. System features -- 4.2.2. User activities -- 4.2.3. Network activities -- 4.3. Preprocess Methods -- 4.4. Detection Methods.

4.4.1. Statistical analysis -- 4.4.2. Expert system -- 4.4.3. Model-based system -- 4.4.4. State transition-based analysis -- 4.4.5. Neural network-based system -- 4.4.6. Data mining-based system -- 4.5. Architecture for Network Intrusion Detection System -- Part A Intrusion Detection for Wired Network -- Chapter 5 Techniques for Intrusion Detection -- 5.1. Available Alarm Management Solutions -- 5.1.1. Alarm correlation -- 5.1.2. Alarm filter -- 5.1.3. Event classification process -- 5.2. Available Performance Maintenance Solutions -- 5.2.1. Adaptive learning -- 5.2.2. Incremental mining -- Chapter 6 Adaptive Automatically Tuning Intrusion Detection System -- 6.1. Architecture -- 6.2. SOM-Based Labeling Tool -- 6.2.1. Training algorithm -- 6.2.2. Pre-cluster by symbolic features -- 6.2.3. Cluster by SOM -- 6.2.4. Label data in clusters -- 6.3. Hybrid Detection Model -- 6.3.1. Binary SLIPPER rule learning system -- 6.3.2. Binary classifiers -- 6.3.3. Final arbiter -- 6.3.4. Detection model tuning -- 6.3.5. Fuzzy prediction filter -- 6.3.6. Fuzzy tuning controller -- Chapter 7 System Prototype and Performance Evaluation -- 7.1. Implementation of Prototype -- 7.1.1. Fuzzy controller -- 7.1.2. Binary prediction and model tuning thread -- 7.1.3. Final arbiter and prediction filter thread -- 7.1.4. User simulator thread -- 7.1.5. Interface for fuzzy knowledge base -- 7.2. Experimental Data set and Related Systems -- 7.2.1. KDDCup'99 intrusion detection data set -- 7.2.2. Performance evaluation method -- 7.2.3. Related IDSs on KDDCup'99 ID data set -- 7.3. Performance Evaluation -- 7.3.1. SOM-based labeling tool performance -- 7.3.2. Build hybrid detection model -- 7.3.3. The MC-SLIPPER system and test performance -- 7.3.4. The ATIDS system and test performance -- 7.3.5. The ADAT IDS system and test performance.

Part B Intrusion Detection for Wireless Sensor Network -- Chapter 8 Attacks against Wireless Sensor Network -- 8.1. Wireless Sensor Network -- 8.2. Challenges on Intrusion Detection in WSNs -- 8.3. Attacks against WSNs -- Chapter 9 Intrusion Detection System for Wireless Sensor Network -- 9.1. Architecture of IDS for WSN -- 9.2. Audit Data in WSN -- 9.2.1. Local features for LIDC in WSN -- 9.2.2. Packet features for PIDC in WSN -- 9.3. Detection Model and Optimization -- 9.4. Model Tuning -- Chapter 10 Conclusion and Future Research -- Cited Literature -- Index.
Abstract:
This important book introduces the concept of intrusion detection, discusses various approaches for intrusion detection systems (IDS), and presents the architecture and implementation of IDS. It emphasizes on the prediction and learning algorithms for intrusion detection and highlights techniques for intrusion detection of wired computer networks and wireless sensor networks. The performance comparison of various IDS via simulation will also be included.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: