Cover image for Noise and Vibration Analysis : Signal Analysis and Experimental Procedures.
Noise and Vibration Analysis : Signal Analysis and Experimental Procedures.
Title:
Noise and Vibration Analysis : Signal Analysis and Experimental Procedures.
Author:
Brandt, Anders.
ISBN:
9780470978177
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (466 pages)
Contents:
NOISE AND VIBRATION ANALYSIS -- Contents -- About the Author -- Preface -- Acknowledgements -- List of Abbreviations -- Notation -- 1 Introduction -- 1.1 Noise and Vibration -- 1.2 Noise and Vibration Analysis -- 1.3 Application Areas -- 1.4 Analysis of Noise and Vibrations -- 1.4.1 Experimental Analysis -- 1.5 Standards -- 1.6 Becoming a Noise and Vibration Analysis Expert -- 1.6.1 The Virtue of Simulation -- 1.6.2 Learning Tools and the Format of this Book -- 2 Dynamic Signals and Systems -- 2.1 Introduction -- 2.2 Periodic Signals -- 2.2.1 Sine Waves -- 2.2.2 Complex Sines -- 2.2.3 Interacting Sines -- 2.2.4 Orthogonality of Sines -- 2.3 Random Signals -- 2.4 Transient Signals -- 2.5 RMS Value and Power -- 2.6 Linear Systems -- 2.6.1 The Laplace Transform -- 2.6.2 The Transfer Function -- 2.6.3 The Impulse Response -- 2.6.4 Convolution -- 2.7 The Continuous Fourier Transform -- 2.7.1 Characteristics of the Fourier Transform -- 2.7.2 The Frequency Response -- 2.7.3 Relationship between the Laplace and Frequency Domains -- 2.7.4 Transient versus Steady-state Response -- 2.8 Chapter Summary -- 2.9 Problems -- References -- 3 Time Data Analysis -- 3.1 Introduction to Discrete Signals -- 3.2 The Sampling Theorem -- 3.2.1 Aliasing -- 3.2.2 Discrete Representation of Analog Signals -- 3.2.3 Interpolation and Resampling -- 3.3 Filters -- 3.3.1 Analog Filters -- 3.3.2 Digital Filters -- 3.3.3 Smoothing Filters -- 3.3.4 Acoustic Octave Filters -- 3.3.5 Analog RMS Integration -- 3.3.6 Frequency Weighting Filters -- 3.4 Time Series Analysis -- 3.4.1 Min- and Max-analysis -- 3.4.2 Time Data Integration -- 3.4.3 Time Data Differentiation -- 3.4.4 FFT-based Processing -- 3.5 Chapter Summary -- 3.6 Problems -- References -- 4 Statistics and Random Processes -- 4.1 Introduction to the Use of Statistics -- 4.1.1 Ensemble and Time Averages.

4.1.2 Stationarity and Ergodicity -- 4.2 Random Theory -- 4.2.1 Expected Value -- 4.2.2 Errors in Estimates -- 4.2.3 Probability Distribution -- 4.2.4 Probability Density -- 4.2.5 Histogram -- 4.2.6 Sample Probability Density Estimate -- 4.2.7 Average Value and Variance -- 4.2.8 Central Moments -- 4.2.9 Skewness -- 4.2.10 Kurtosis -- 4.2.11 Crest Factor -- 4.2.12 Correlation Functions -- 4.2.13 The Gaussian Probability Distribution -- 4.3 Statistical Methods -- 4.3.1 Hypothesis Tests -- 4.3.2 Test of Normality -- 4.3.3 Test of Stationarity -- 4.4 Quality Assessment of Measured Signals -- 4.5 Chapter Summary -- 4.6 Problems -- References -- 5 Fundamental Mechanics -- 5.1 Newton's Laws -- 5.2 The Single Degree-of-freedom System (SDOF) -- 5.2.1 The Transfer Function -- 5.2.2 The Impulse Response -- 5.2.3 The Frequency Response -- 5.2.4 The Q-factor -- 5.2.5 SDOF Forced Response -- 5.3 Alternative Quantities for Describing Motion -- 5.4 Frequency Response Plot Formats -- 5.4.1 Magnitude and Phase -- 5.4.2 Real and Imaginary Parts -- 5.4.3 The Nyquist Plot - Imaginary vs. Real Part -- 5.5 Determining Natural Frequency and Damping -- 5.5.1 Peak in the Magnitude of FRF -- 5.5.2 Peak in the Imaginary Part of FRF -- 5.5.3 Resonance Bandwidth (3 dB Bandwidth) -- 5.5.4 Circle in the Nyquist Plot -- 5.6 Rotating Mass -- 5.7 Some Comments on Damping -- 5.7.1 Hysteretic Damping -- 5.8 Models Based on SDOF Approximations -- 5.8.1 Vibration Isolation -- 5.8.2 Resonance Frequency and Stiffness Approximations -- 5.9 The Two-degree-of-freedom System (2DOF) -- 5.10 The Tuned Damper -- 5.11 Chapter Summary -- 5.12 Problems -- References -- 6 Modal Analysis Theory -- 6.1 Waves on a String -- 6.2 Matrix Formulations -- 6.2.1 Degree-of-freedom -- 6.3 Eigenvalues and Eigenvectors -- 6.3.1 Undamped System -- 6.3.2 Mode Shape Orthogonality -- 6.3.3 Modal Coordinates.

6.3.4 Proportional Damping -- 6.3.5 General Damping -- 6.4 Frequency Response of MDOF Systems -- 6.4.1 Frequency Response from [M], [C], [K] -- 6.4.2 Frequency Response from Modal Parameters -- 6.4.3 Frequency Response from [M], [K], and ζ - Modal Damping -- 6.4.4 Mode Shape Scaling -- 6.4.5 The Effect of Node Lines on FRFs -- 6.4.6 Antiresonance -- 6.4.7 Impulse Response of MDOF Systems -- 6.5 Time Domain Simulation of Forced Response -- 6.6 Chapter Summary -- 6.7 Problems -- References -- 7 Transducers for Noise and Vibration Analysis -- 7.1 The Piezoelectric Effect -- 7.2 The Charge Amplifier -- 7.3 Transducers with Built-In Impedance Converters, 'IEPE' -- 7.3.1 Low-frequency Characteristics -- 7.3.2 High-frequency Characteristics -- 7.3.3 Transducer Electronic Data Sheet, TEDS -- 7.4 The Piezoelectric Accelerometer -- 7.4.1 Frequency Characteristics -- 7.4.2 Mounting Accelerometers -- 7.4.3 Electrical Noise -- 7.4.4 Choosing an Accelerometer -- 7.5 The Piezoelectric Force Transducer -- 7.6 The Impedance Head -- 7.7 The Impulse Hammer -- 7.8 Accelerometer Calibration -- 7.9 Measurement Microphones -- 7.10 Microphone Calibration -- 7.11 Shakers for Structure Excitation -- 7.12 Some Comments on Measurement Procedures -- 7.13 Problems -- References -- 8 Frequency Analysis Theory -- 8.1 Periodic Signals - The Fourier Series -- 8.2 Spectra of Periodic Signals -- 8.2.1 Frequency and Time -- 8.3 Random Processes -- 8.3.1 Spectra of Random Processes -- 8.4 Transient Signals -- 8.5 Interpretation of spectra -- 8.6 Chapter Summary -- 8.7 Problems -- References -- 9 Experimental Frequency Analysis -- 9.1 Frequency Analysis Principles -- 9.1.1 Nonparametric Frequency Analysis -- 9.2 Octave and Third-octave Band Spectra -- 9.2.1 Time Constants -- 9.2.2 Real-time versus Serial Measurements -- 9.3 The Discrete Fourier Transform (DFT).

9.3.1 The Fast Fourier Transform, FFT -- 9.3.2 The DFT in Short -- 9.3.3 The Basis of the DFT -- 9.3.4 Periodicity of the DFT -- 9.3.5 Properties of the DFT -- 9.3.6 Relation between DFT and Continuous Spectrum -- 9.3.7 Leakage -- 9.3.8 The Picket-fence Effect -- 9.3.9 Time Windows for Periodic Signals -- 9.3.10 Time Windows for Random Signals -- 9.3.11 Oversampling in FFT Analysis -- 9.3.12 Circular Convolution and Aliasing -- 9.3.13 Zero Padding -- 9.3.14 Zoom FFT -- 9.4 Chapter Summary -- 9.5 Problems -- References -- 10 Spectrum and Correlation Estimates Using the DFT -- 10.1 Averaging -- 10.2 Spectrum Estimators for Periodic Signals -- 10.2.1 The Autopower Spectrum -- 10.2.2 Linear Spectrum -- 10.2.3 Phase Spectrum -- 10.3 Estimators for PSD and CSD -- 10.3.1 The Periodogram -- 10.3.2 Welch's Method -- 10.3.3 Window Correction for Welch Estimates -- 10.3.4 Bias Error in Welch Estimates -- 10.3.5 Random Error in Welch Estimates -- 10.3.6 The Smoothed Periodogram Estimator -- 10.3.7 Bias Error in Smoothed Periodogram Estimates -- 10.3.8 Random Error in Smoothed Periodogram Estimates -- 10.4 Estimator for Correlation Functions -- 10.5 Estimators for Transient Signals -- 10.5.1 Windows for Transient Signals -- 10.6 Spectrum Estimation in Practice -- 10.6.1 Linear Spectrum Versus PSD -- 10.6.2 Example of a Spectrum of a Periodic Signal -- 10.6.3 Practical PSD Estimation -- 10.6.4 Spectrum of Mixed Property Signal -- 10.6.5 Calculating RMS Values in Practice -- 10.6.6 RMS From Linear Spectrum of Periodic Signal -- 10.6.7 RMS from PSD -- 10.6.8 Weighted RMS Values -- 10.6.9 Integration and Differentiation in the Frequency Domain -- 10.7 Multi-channel Spectral Analysis -- 10.7.1 Matrix Notation for MIMO Spectral Analysis -- 10.7.2 Arranging Spectral Matrices in MATLAB/Octave -- 10.8 Chapter Summary -- 10.9 Problems -- References.

11 Measurement and Analysis Systems -- 11.1 Principal Design -- 11.2 Hardware for Noise and Vibration Analysis -- 11.2.1 Signal Conditioning -- 11.2.2 Analog-to-digital Conversion, ADC -- 11.2.3 Practical Issues -- 11.2.4 Hardware Specifications -- 11.2.5 Transient (Shock) Recording -- 11.3 FFT Analysis Software -- 11.3.1 Block Processing -- 11.3.2 Data Scaling -- 11.3.3 Triggering -- 11.3.4 Averaging -- 11.3.5 FFT Setup Parameters -- 11.4 Chapter Summary -- 11.5 Problems -- References -- 12 Rotating Machinery Analysis -- 12.1 Vibrations in Rotating Machines -- 12.2 Understanding Time-Frequency Analysis -- 12.3 Rotational Speed Signals (Tachometer Signals) -- 12.4 RPM Maps -- 12.4.1 The Waterfall Plot -- 12.4.2 The Color Map Plot -- 12.5 Smearing -- 12.6 Order Tracks -- 12.7 Synchronous Sampling -- 12.7.1 DFT Parameters after Resampling -- 12.8 Averaging Rotation-speed-dependent Signals -- 12.9 Adding Change in RMS with Time -- 12.10 Parametric Methods -- 12.11 Chapter Summary -- 12.12 Problems -- References -- 13 Single-input Frequency Response Measurements -- 13.1 Linear Systems -- 13.2 Determining Frequency Response Experimentally -- 13.2.1 Method 1 - the H1 Estimator -- 13.2.2 Method 2 - the H2 Estimator -- 13.2.3 Method 3 - the Hc Estimator -- 13.3 Important Relationships for Linear Systems -- 13.4 The Coherence Function -- 13.5 Errors in Determining the Frequency Response -- 13.5.1 Bias Error in FRF Estimates -- 13.5.2 Random Error in FRF Estimates -- 13.5.3 Bias and Random Error Trade-offs -- 13.6 Coherent Output Power -- 13.7 The Coherence Function in Practice -- 13.7.1 Non-random Excitation -- 13.8 Impact Excitation -- 13.8.1 The Force Signal -- 13.8.2 The Response Signal and Exponential Window -- 13.8.3 Impact Testing Software -- 13.8.4 Compensating for the Influence of the Exponential Window -- 13.8.5 Sources of Error.

13.8.6 Improving Impact Testing by Alternative Processing.
Abstract:
Noise and Vibration Analysis is a complete and practical guide that combines both signal processing and modal analysis theory with their practical application in noise and vibration analysis. It provides an invaluable, integrated guide for practicing engineers as well as a suitable introduction for students new to the topic of noise and vibration. Taking a practical learning approach, Brandt includes exercises that allow the content to be developed in an academic course framework or as supplementary material for private and further study. Addresses the theory and application of signal analysis procedures as they are applied in modern instruments and software for noise and vibration analysis Features numerous line diagrams and illustrations Accompanied by a web site at www.wiley.com/go/brandt with numerous MATLAB tools and examples. Noise and Vibration Analysis provides an excellent resource for researchers and engineers from automotive, aerospace, mechanical, or electronics industries who work with experimental or analytical vibration analysis and/or acoustics. It will also appeal to graduate students enrolled in vibration analysis, experimental structural dynamics, or applied signal analysis courses.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: