Cover image for Galois Theory.
Galois Theory.
Title:
Galois Theory.
Author:
Cox, David A.
ISBN:
9781118218426
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (603 pages)
Series:
Pure and Applied Mathematics: a Wiley Series of Texts, Monographs and Tracts Ser. ; v.106

Pure and Applied Mathematics: a Wiley Series of Texts, Monographs and Tracts Ser.
Contents:
Galois Theory -- CONTENTS -- Preface to the First Edition -- Preface to the Second Edition -- Notation -- 1 Basic Notation -- 2 Chapter-by-Chapter Notation -- PART I POLYNOMIALS -- 1 Cubic Equations -- 1.1 Cardan's Formulas -- Historical Notes -- 1.2 Permutations of the Roots -- A Permutations -- B The Discriminant -- C Symmetric Polynomials -- Mathematical Notes -- Historical Notes -- 1.3 Cubic Equations over the Real Numbers -- A The Number of Real Roots -- B Trigonometric Solution of the Cubic -- Historical Notes -- References -- 2 Symmetric Polynomials -- 2.1 Polynomials of Several Variables -- A The Polynomial Ring in n Variables -- B The Elementary Symmetric Polynomials -- Mathematical Notes -- 2.2 Symmetric Polynomials -- A The Fundamental Theorem -- B The Roots of a Polynomial -- C Uniqueness -- Mathematical Notes -- Historical Notes -- 2.3 Computing with Symmetric Polynomials (Optional) -- A Using Mathematica -- B Using Maple -- 2.4 The Discriminant -- Mathematical Notes -- Historical Notes -- References -- 3 Roots of Polynomials -- 3.1 The Existence of Roots -- Mathematical Notes -- Historical Notes -- 3.2 The Fundamental Theorem of Algebra -- Mathematical Notes -- Historical Notes -- References -- PART II FIELDS -- 4 Extension Fields -- 4.1 Elements of Extension Fields -- A Minimal Polynomials -- B Adjoining Elements -- Mathematical Notes -- Historical Notes -- 4.2 Irreducible Polynomials -- A Using Maple and Mathematica -- B Algorithms for Factoring -- C The Schönemann-Eisenstein Criterion -- D Prime Radicals -- Historical Notes -- 4.3 The Degree of an Extension -- A Finite Extensions -- B The Tower Theorem -- Mathematical Notes -- Historical Notes -- 4.4 Algebraic Extensions -- Mathematical Notes -- References -- 5 Normal and Separable Extensions -- 5.1 Splitting Fields -- A Definition and Examples -- B Uniqueness.

5.2 Normal Extensions -- Historical Notes -- 5.3 Separable Extensions -- A Fields of Characteristic 0 -- B Fields of Characteristic p -- C Computations -- Mathematical Notes -- 5.4 Theorem of the Primitive Element -- Mathematical Notes -- Historical Notes -- References -- 6 The Galois Group -- 6.1 Definition of the Galois Group -- Historical Notes -- 6.2 Galois Groups of Splitting Fields -- 6.3 Permutations of the Roots -- Mathematical Notes -- Historical Notes -- 6.4 Examples of Galois Groups -- A The pth Roots of 2 -- B The Universal Extension -- C A Polynomial of Degree 5 -- Mathematical Notes -- Historical Notes -- 6.5 Abelian Equations (Optional) -- Historical Notes -- References -- 7 The Galois Correspondence -- 7.1 Galois Extensions -- A Splitting Fields of Separable Polynomials -- B Finite Separable Extensions -- C Galois Closures -- Historical Notes -- 7.2 Normal Subgroups and Normal Extensions -- A Conjugate Fields -- B Normal Subgroups -- Mathematical Notes -- Historical Notes -- 7.3 The Fundamental Theorem of Galois Theory -- 7.4 First Applications -- A The Discriminant -- B The Universal Extension -- C The Inverse Galois Problem -- Historical Notes -- 7.5 Automorphisms and Geometry (Optional) -- A Groups of Automorphisms -- B Function Fields in One Variable -- C Linear Fractional Transformations -- D Stereographic Projection -- Mathematical Notes -- References -- PART III APPLICATIONS -- 8 Solvability by Radicals -- 8.1 Solvable Groups -- Mathematical Notes -- 8.2 Radical and Solvable Extensions -- A Definitions and Examples -- B Compositums and Galois Closures -- C Properties of Radical and Solvable Extensions -- Historical Notes -- 8.3 Solvable Extensions and Solvable Groups -- A Roots of Unity and Lagrange Resolvents -- B Galois's Theorem -- C Cardan's Formulas -- Historical Notes -- 8.4 Simple Groups -- Mathematical Notes.

Historical Notes -- 8.5 Solving Polynomials by Radicals -- A Roots and Radicals -- B The Universal Polynomial -- C Abelian Equations -- D The Fundamental Theorem of Algebra Revisited -- Historical Notes -- 8.6 The Casus Irreducbilis (Optional) -- A Real Radicals -- B Irreducible Polynomials with Real Radical Roots -- C The Failure of Solvability in Characteristic p -- Historical Notes -- References -- 9 Cyclotomic Extensions -- 9.1 Cyclotomic Polynomials -- A Some Number Theory -- B Definition of Cyclotomic Polynomials -- C The Galois Group of a Cyclotomic Extension -- Historical Notes -- 9.2 Gauss and Roots of Unity (Optional) -- A The Galois Correspondence -- B Periods -- C Explicit Calculations -- D Solvability by Radicals -- Mathematical Notes -- Historical Notes -- References -- 10 Geometric Constructions -- 10.1 Constructible Numbers -- Mathematical Notes -- Historical Notes -- 10.2 Regular Polygons and Roots of Unity -- Historical Notes -- 10.3 Origami (Optional) -- A Origami Constructions -- B Origami Numbers -- C Marked Rulers and Intersections of Conics -- Mathematical Notes -- Historical Notes -- References -- 11 Finite Fields -- 11.1 The Structure of Finite Fields -- A Existence and Uniqueness -- B Galois Groups -- Mathematical Notes -- Historical Notes -- 11.2 Irreducible Polynomials over Finite Fields (Optional) -- A Irreducible Polynomials of Fixed Degree -- B Cyclotomic Polynomials Modulo p -- C Berlekamp's Algorithm -- Historical Notes -- References -- PART IV FURTHER TOPICS -- 12 Lagrange, Galois, and Kronecker -- 12.1 Lagrange -- A Resolvent Polynomials -- B Similar Functions -- C The Quartic -- D Higher Degrees -- E Lagrange Resolvents -- Historical Notes -- 12.2 Galois -- A Beyond Lagrange -- B Galois Resolvents -- C Galois's Group -- D Natural and Accessory Irrationalities -- E Galois's Strategy -- Historical Notes.

12.3 Kronecker -- A Algebraic Quantities -- B Module Systems -- C Splitting Fields -- Historical Notes -- References -- 13 Computing Galois Groups -- 13.1 Quartic Polynomials -- Mathematical Notes -- Historical Notes -- 13.2 Quintic Polynomials -- A Transitive Subgroups of S5 -- B Galois Groups of Quintics -- C Examples -- D Solvable Quintics -- Mathematical Notes -- Historical Notes -- 13.3 Resolvents -- A Jordan's Strategy -- B Relative Resolvents -- C Quartics in All Characteristics -- D Factoring Resolvents -- Mathematical Notes -- 13.4 Other Methods -- A Kronecker's Analysis -- B Dedekind's Theorem -- Mathematical Notes -- References -- 14 Solvable Permutation Groups -- 14.1 Polynomials of Prime Degree -- Mathematical Notes -- Historical Notes -- 14.2 Imprimitive Polynomials of Prime-Squared Degree -- A Primitive and Imprimitive Groups -- B Wreath Products -- C The Solvable Case -- Mathematical Notes -- Historical Notes -- 14.3 Primitive Permutation Groups -- A Doubly Transitive Permutation Groups -- B Affine Linear and Semilinear Groups -- C Minimal Normal Subgroups -- D The Solvable Case -- Mathematical Notes -- Historical Notes -- 14.4 Primitive Polynomials of Prime-Squared Degree -- A The First Two Subgroups -- B The Third Subgroup -- C The Solvable Case -- Mathematical Notes -- Historical Notes -- References -- 15 The Lemniscate -- 15.1 Division Points and Arc Length -- A Division Points of the Lemniscate -- B Arc Length of the Lemniscate -- Mathematical Notes -- Historical Notes -- 15.2 The Lemniscatic Function -- A A Periodic Function -- B Addition Laws -- C Multiplication by Integers -- Historical Notes -- 15.3 The Complex Lemniscatic Function -- A A Doubly Periodic Function -- B Zeros and Poles -- Mathematical Notes -- Historical Notes -- 15.4 Complex Multiplication -- A The Gaussian Integers -- B Multiplication by Gaussian Integers.

C Multiplication by Gaussian Primes -- Mathematical Notes -- Historical Notes -- 15.5 Abel's Theorem -- A The Lemniscatic Galois Group -- B Straightedge-and-Compass Constructions -- Mathematical Notes -- Historical Notes -- References -- A Abstract Algebra -- A.1 Basic Algebra -- A Groups -- B Rings -- C Fields -- D Polynomials -- A.2 Complex Numbers -- A Addition, Multiplication, and Division -- B Roots of Complex Numbers -- A.3 Polynomials with Rational Coefficients -- A.4 Group Actions -- A.5 More Algebra -- A The Sylow Theorems -- B The Chinese Remainder Theorem -- C The Multiplicative Group of a Field -- D Unique Factorization Domains -- B Hints to Selected Exercises -- C Student Projects -- References -- A Books and Monographs on Galois Theory -- B Books on Abstract Algebra -- C Collected Works -- Index.
Abstract:
Praise for the First Edition ". . .will certainly fascinate anyone interested in abstract algebra: a remarkable book!" -Monatshefte fur Mathematik Galois theory is one of the most established topics in mathematics, with historical roots that led to the development of many central concepts in modern algebra, including groups and fields. Covering classic applications of the theory, such as solvability by radicals, geometric constructions, and finite fields, Galois Theory, Second Edition delves into novel topics like Abel's theory of Abelian equations, casus irreducibili, and the Galois theory of origami. In addition, this book features detailed treatments of several topics not covered in standard texts on Galois theory, including: The contributions of Lagrange, Galois, and Kronecker How to compute Galois groups Galois's results about irreducible polynomials of prime or prime-squared degree Abel's theorem about geometric constructions on the lemniscates Galois groups of quartic polynomials in all characteristics Throughout the book, intriguing Mathematical Notes and Historical Notes sections clarify the discussed ideas and the historical context; numerous exercises and examples use Maple and Mathematica to showcase the computations related to Galois theory; and extensive references have been added to provide readers with additional resources for further study. Galois Theory, Second Edition is an excellent book for courses on abstract algebra at the upper-undergraduate and graduate levels. The book also serves as an interesting reference for anyone with a general interest in Galois theory and its contributions to the field of mathematics.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: