
High Performance Polymers and Engineering Plastics.
Title:
High Performance Polymers and Engineering Plastics.
Author:
Mittal, Vikas.
ISBN:
9781118171929
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (454 pages)
Contents:
High Performance Polymers and Engineering Plastics -- Contents -- Preface -- List of Contributors -- 1 High Performance Polymers: An Overview -- 1.1 Introduction -- 1.2 Poly (ether amide) and Poly(ether amide-imide) -- 1.3 Poly(arylene ether) -- 1.4 Benzoxazine Polymers -- 1.5 Poly (ether ether ketone) (PEEK) -- 1.6 Polytriazole -- 1.7 Hyperbranched Conjugated Polymers -- 1.8 Alternating Copolymers -- 1.9 References -- 2 Synthesis and Properties of Polyoxadiazoles -- 2.1 Introduction -- 2.2 Synthesis of Polyoxadiazoles in Poly(phosphoric acid) -- 2.3 Thermal and Mechanical Properties of Polyoxadiazoles -- 2.4 Application Fields -- 2.5 References -- 3 Conjugated Polymers Based on Benzo[1,2-b:4,5-b']dithiophene for Organic Electronics -- 3.1 Introduction -- 3.2 General Synthetic Methods for BDT Monomers and Polymers -- 3.2.1 Synthesis of BDT Monomers -- 3.2.2 Polymerization Methods of Polymers Incorporating BDT Unit -- 3.3 Application of BDT-Based Polymers in OFET and PSC -- 3.3.1 Introduction of OFET -- 3.3.2 BDT Based Polymers in OFET Application -- 3.3.3 Introduction of PSC -- 3.3.4 BDT Based Polymers for High performance PSC -- 3.4 Outlook -- 3.5 References -- 4 Polysulfone-Based Ionomers -- 4.1 Introduction -- 4.2 Polysulfone Backbone and Selection of the Ionic Function -- 4.3 Ionomer Synthesis and Characterization -- 4.3.1 Chemical Modification of Commercially Available Polysulfones -- 4.3.1.1 Acidic Ionic Function Attached Directly at Ortho-to-Ether Position of the Polymer -- 4.3.1.2 Ionic Function Attached Directly to Ortho-to-Sulfone Position of the Polymer -- 4.3.1.3 Ionic Function Attached to Main-Chain Through Side Chains -- 4.3.2 Polymerisation of Ionic Monomers by Step Growth -- 4.3.2.1 Ionomers Containing Hexafluoro-Isopropylidene or/and Polar Functions -- 4.3.2.2 Multi-block Ionomeric Polycondensates Based on Medium to Long Blocks.
4.3.2.3 Multi-block Copolymers and Random- Ionomeric Copolymers -- 4.4 Conclusion -- 4.5 References -- 5 High-Performance Processable Aromatic Polyamides -- 5.1 Introduction -- 5.2 Monomers -- 5.2.1 Monomers Containing Flexibilizing Spacers -- 5.2.2 Monomers with Bulky Side Substituents -- 5.2.3 Monomers Containing Cardo Moieties -- 5.2.4 Monomers Containing Trifluoromethyl Groups -- 5.3 Polymerization -- 5.3.1 Low Temperature Solution Polycondensation -- 5.3.2 High Temperature Phosphorylation Polyamidation Reaction -- 5.4 Major Problem with Aromatic Polyamides -- 5.5 Approaches to Processable Polyamides -- 5.6 Processable Linear Aromatic Polyamides -- 5.6.1 Polyamides Containing Flexibilizing Spacers -- 5.6.2 Polyamides with Bulky Side Substituents -- 5.6.3 Polyamides with Cardo Moieties -- 5.6.4 Polyamides Containing Trifluoromethyl Groups -- 5.7 Processable Hyperbranched Aromatic Polyamides -- 5.8 Properties -- 5.9 Applications -- 5.9.1 Aromatic Polyamides for Membrane Application -- 5.9.1.1 Aromatic Polyamides for Pervaporation Application -- 5.9.1.2 Aromatic Polyamides for Gas Separation Application -- 5.9.1.3 Aromatic Polyamides as Reverse Osmosis and Nanofiltration Application -- 5.9.1.4 Aromatic Polyamides as Ion Exchange Membrane -- 5.9.2 Polyamides with Special Properties -- 5.9.2.1 Optically Active Polyamides (OAPs) -- 5.9.2.2 Luminescent and Electrochromic PAs -- 5.10 Conclusion -- 5.11 References -- 6 Phosphorus-Containing Polysulfones -- 6.1 Introduction -- 6.2 Synthesis of Phosphorus Containing Polysulfones -- 6.2.1 Functionalization of Preformed Polysulfones -- 6.2.1.1 Functionalization of Sulfone Moiety -- 6.2.1.2 Functionalization of the Bisphenol A Moiety -- 6.2.2 Polycondensation of Phosphorus Containing Diols with Dihalogen Substituted Aromatic Sulfones -- 6.3 Properties of Phosphorus-Containing Polysulfones (P-PSF).
6.3.1 Spectral Features -- 6.3.2 Solubility -- 6.3.3 Thermal Stability -- 6.3.3.1 Thermal Gravimetric Aspects -- 6.3.3.2 Glass Transition and Mechanical Properties -- 6.3.3.3 Differences Between Thermal and Thermo-Oxidative Degradation of Phosphorus Containing Polysulf ones -- 6.4 High Performance Applications of Phosphorus-Containing Polysulfones -- 6.4.1 Membrane Materials in Proton exchange Membrane Fuel Cell -- 6.4.2 Protein-Adsorption-Resistant Membranes -- 6.4.3 Flame Resistant Materials -- 6.5 References -- 7 Synthesis and Characterization of Novel Polyimides -- 7.1 Introduction -- 7.2 Synthesis of Polyimides -- 7.2.1 Two-step Procedure -- 7.2.2 One-step Procedure -- 7.2.3 Three-step Procedure -- 7.3 Properties of Aromatic Polyimides -- 7.3.1 Kapton-type Polyimide -- 7.3.2 Biphenyl-type Polyimides and Polyimides with a Connecting Group (-X-) between the Phthalimides -- 7.3.3 Polyimides from Characteristic Monomers -- 7.3.3.1 Polyimides from Isomeric Biphenyltetracarboxylic Dianhydrides -- 7.3.3.2 Polyimides from Isomeric Oxydiphthalic Anhydride -- 7.3.3.3 Polyimides Containing p-Phenylene Units, -(C6H4)m- (m = 2, 3, 4), between Phthalimides -- 7.3.3.4 Polyimides Containing Ester Linkages, -COOC6H4OCO-, between Phthalimides -- 7.3.3.5 Polyimides Containing Ether Linkages, -O-Ar-O- (Ar: Bulky Moiety) -- 7.4 Conclusions -- 7.5 References -- 8 The Effects of Structures on Properties of New Polytriazole Resins -- 8.1 Introduction -- 8.2 The Preparation of Polytriazole Resins -- 8.3 Reactivity of Crosslinkable Polytriazole Resins -- 8.4 Glass Transition Temperatures of Polytriazole Resins -- 8.4.1 The Effect of Molecular Rigidity and Polarity on the Glass Transition Temperature (Tg) -- 8.4.2 The Effect of Monomer Functionality on Tg -- 8.4.3 The Effect of Crosslinked Network Grid Size on Tg -- 8.5 Mechanical Properties of Polytriazole Resins.
8.5.1 The Effect of Structures On Mechanical Properties of Polytriazole Resins -- 8.5.2 The Effect of Crosslinking on Mechanical Properties of Polytriazole Resins -- 8.6 Dielectric Properties of Polytriazole Resins -- 8.7 Thermal Stabilities of Polytriazole Resins -- 8.8 Conclusions -- 8.9 Acknowledgement -- 8.10 References -- 9 High Performance Fibers -- Introduction -- 9.1 PIPD or "M5" Rigid Rod -- 9.1.1 A New HM-HT Fiber -- 9.1.2 Monomer Selection and Syntheses -- 9.1.3 Polymerization -- 9.1.4 Fiber Spinning and Fiber Properties -- 9.1.5 Applications and Outlook -- 9.2 "Zylon" PBO Rigid Rod Polymer Fibers -- 9.2.1 Introduction -- 9.2.2 Monomer Synthesis -- 9.2.3 Polymerization -- 9.2.4 Solution Properties -- 9.2.5 Fiber Spinning -- 9.2.6 Structure and Morphology -- 9.2.7 Fiber Properties -- 9.2.7.1 Mechanical Properties -- 9.2.7.2 Thermal Properties -- 9.2.7.3 Ballistic Properties -- 9.2.7.4 Applications and Outlook -- 9.3 Aromatic Polyamide-Rigid Rod "Kevlar" Poly(p-Phenylene Terephthalamide) Fibers -- 9.3.1 Introduction -- 9.3.2 Polymer Synthesis -- 9.3.3 Fiber Spinning -- 9.3.4 Structure and Properties -- 9.3.5 Application and Outlook -- 9.4 Spectra, Dyneema UHMWPE Flexible Polymer Chain -- 9.4.1 Introduction -- 9.4.2 Polymerization -- 9.4.3 Spinning and Fiber Properties -- 9.4.4 Application and Outlook -- 9.5 Carbon Fibers -- 9.5.1 Introduction -- 9.5.2 PAN-Based Carbon Fibers -- 9.5.3 Pitch-Based Carbon Fibers -- 9.5.4 Vapor-Grown Carbon Fibers -- 9.5.5 Carbon Nanotubes -- 9.5.6 Applications -- 9.6 Advances in Improving Performance of Conventional Fibers -- 9.6.1 Introduction -- 9.6.2 Conventional Methods -- 9.6.3 Innovative Liquid Isothermal Bath (Lib) Method -- 9.6.3.1 Liquid Isothermal Bath (LIB) -- 9.6.3.2 Properties of LIB Fibers -- 9.6.3.3 Morphology of LIB Fibers -- 9.7 Conclusions -- 9.8 Acknowledgments -- 9.9 References.
10 Synthesis and Characterization of Poly (aryl ether ketone) Copolymers -- 10.1 Introduction -- 10.2 General Synthetic Methods of PAEK Copolymers -- 10.3 Synthesis and Characterization of Structural Poly (aryl ether ketone) Copolymers -- 10.4 Synthesis and Characterization of Liquid Crystalline Poly (aryl ether ketone) Copolymers -- 10.5 Synthesis and Characterization of Poly (aryl ether ketone) Copolymers with Pendent Group -- 10.6 Synthesis and Characterization of poly (aryl ether ketone) copolymers with Containing 2,7 -Naphthalene Moieties -- 10.7 References -- 11 Liquid Crystalline Thermoset Epoxy Resins -- 11.1 Liquid Crystals -- 11.1.1 Characterization of Liquid Crystals -- 11.1.2 Electric and Magnetic Field Effects -- 11.1.3 Liquid Crystalline Polymers (LCPs) -- 11.2 Liquid Crystalline Thermosets Based on Epoxy Resins -- 11.3 Synthesis and Physical Properties of LCERs -- 11.3.1 Synthesis of LCERs -- 11.3.2 Cure Behavior LCERs -- 11.3.3 Properties of Liquid Crystal Epoxy Thermosets Cured in a Magnetic Field -- 11.3.4 Curing of LCERs at Different Temperatures -- 11.3.5 Curing of LCERs with Deferent Curing Agents -- 11.3.6 Fracture Mechanism of LCTs -- 11.3.7 Water Absorption -- 11.3.8 Thermal Properties -- 11.4 References -- Index.
Abstract:
This book describes advances in synthesis, processing, and technology of environmentally friendly polymers generated from renewable resources. With contents based on a wide range of functional monomers and contributions from eminent researchers, this volume demonstrates the design, synthesis, properties and applications of plant oil based polymers, presenting an elaborate review of acid mediated polymerization techniques for the generation of green polymers. Chemical engineers are provided with state-of-the-art information that acts to further progress research in this direction.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View