
Statistical Pattern Recognition.
Title:
Statistical Pattern Recognition.
Author:
Webb, Andrew R.
ISBN:
9781119952961
Personal Author:
Edition:
3rd ed.
Physical Description:
1 online resource (668 pages)
Series:
Wiley Finance
Contents:
Statistical Pattern Recognition -- Contents -- Preface -- Notation -- 1 Introduction to Statistical Pattern Recognition -- 1.1 Statistical Pattern Recognition -- 1.1.1 Introduction -- 1.1.2 The Basic Model -- 1.2 Stages in a Pattern Recognition Problem -- 1.3 Issues -- 1.4 Approaches to Statistical Pattern Recognition -- 1.5 Elementary Decision Theory -- 1.5.1 Bayes' Decision Rule for Minimum Error -- 1.5.2 Bayes' Decision Rule for Minimum Error - Reject Option -- 1.5.3 Bayes' Decision Rule for Minimum Risk -- 1.5.4 Bayes' Decision Rule for Minimum Risk - Reject Option -- 1.5.5 Neyman-Pearson Decision Rule -- 1.5.6 Minimax Criterion -- 1.5.7 Discussion -- 1.6 Discriminant Functions -- 1.6.1 Introduction -- 1.6.2 Linear Discriminant Functions -- 1.6.3 Piecewise Linear Discriminant Functions -- 1.6.4 Generalised Linear Discriminant Function -- 1.6.5 Summary -- 1.7 Multiple Regression -- 1.8 Outline of Book -- 1.9 Notes and References -- Exercises -- 2 Density Estimation - Parametric -- 2.1 Introduction -- 2.2 Estimating the Parameters of the Distributions -- 2.2.1 Estimative Approach -- 2.2.2 Predictive Approach -- 2.3 The Gaussian Classifier -- 2.3.1 Specification -- 2.3.2 Derivation of the Gaussian Classifier Plug-In Estimates -- 2.3.3 Example Application Study -- 2.4 Dealing with Singularities in the Gaussian Classifier -- 2.4.1 Introduction -- 2.4.2 Naı̈ve Bayes -- 2.4.3 Projection onto a Subspace -- 2.4.4 Linear Discriminant Function -- 2.4.5 Regularised Discriminant Analysis -- 2.4.6 Example Application Study -- 2.4.7 Further Developments -- 2.4.8 Summary -- 2.5 Finite Mixture Models -- 2.5.1 Introduction -- 2.5.2 Mixture Models for Discrimination -- 2.5.3 Parameter Estimation for Normal Mixture Models -- 2.5.4 Normal Mixture Model Covariance Matrix Constraints -- 2.5.5 How Many Components? -- 2.5.6 Maximum Likelihood Estimation via EM.
2.5.7 Example Application Study -- 2.5.8 Further Developments -- 2.5.9 Summary -- 2.6 Application Studies -- 2.7 Summary and Discussion -- 2.8 Recommendations -- 2.9 Notes and References -- Exercises -- 3 Density Estimation - Bayesian -- 3.1 Introduction -- 3.1.1 Basics -- 3.1.2 Recursive Calculation -- 3.1.3 Proportionality -- 3.2 Analytic Solutions -- 3.2.1 Conjugate Priors -- 3.2.2 Estimating the Mean of a Normal Distribution with Known Variance -- 3.2.3 Estimating the Mean and the Covariance Matrix of a Multivariate Normal Distribution -- 3.2.4 Unknown Prior Class Probabilities -- 3.2.5 Summary -- 3.3 Bayesian Sampling Schemes -- 3.3.1 Introduction -- 3.3.2 Summarisation -- 3.3.3 Sampling Version of the Bayesian Classifier -- 3.3.4 Rejection Sampling -- 3.3.5 Ratio of Uniforms -- 3.3.6 Importance Sampling -- 3.4 Markov Chain Monte Carlo Methods -- 3.4.1 Introduction -- 3.4.2 The Gibbs Sampler -- 3.4.3 Metropolis-Hastings Algorithm -- 3.4.4 Data Augmentation -- 3.4.5 Reversible Jump Markov Chain Monte Carlo -- 3.4.6 Slice Sampling -- 3.4.7 MCMC Example - Estimation of Noisy Sinusoids -- 3.4.8 Summary -- 3.4.9 Notes and References -- 3.5 Bayesian Approaches to Discrimination -- 3.5.1 Labelled Training Data -- 3.5.2 Unlabelled Training Data -- 3.6 Sequential Monte Carlo Samplers -- 3.6.1 Introduction -- 3.6.2 Basic Methodology -- 3.6.3 Summary -- 3.7 Variational Bayes -- 3.7.1 Introduction -- 3.7.2 Description -- 3.7.3 Factorised Variational Approximation -- 3.7.4 Simple Example -- 3.7.5 Use of the Procedure for Model Selection -- 3.7.6 Further Developments and Applications -- 3.7.7 Summary -- 3.8 Approximate Bayesian Computation -- 3.8.1 Introduction -- 3.8.2 ABC Rejection Sampling -- 3.8.3 ABC MCMC Sampling -- 3.8.4 ABC Population Monte Carlo Sampling -- 3.8.5 Model Selection -- 3.8.6 Summary -- 3.9 Example Application Study.
3.10 Application Studies -- 3.11 Summary and Discussion -- 3.12 Recommendations -- 3.13 Notes and References -- Exercises -- 4 Density Estimation - Nonparametric -- 4.1 Introduction -- 4.1.1 Basic Properties of Density Estimators -- 4.2 k-Nearest-Neighbour Method -- 4.2.1 k-Nearest-Neighbour Classifier -- 4.2.2 Derivation -- 4.2.3 Choice of Distance Metric -- 4.2.4 Properties of the Nearest-Neighbour Rule -- 4.2.5 Linear Approximating and Eliminating Search Algorithm -- 4.2.6 Branch and Bound Search Algorithms: kd-Trees -- 4.2.7 Branch and Bound Search Algorithms: Ball-Trees -- 4.2.8 Editing Techniques -- 4.2.9 Example Application Study -- 4.2.10 Further Developments -- 4.2.11 Summary -- 4.3 Histogram Method -- 4.3.1 Data Adaptive Histograms -- 4.3.2 Independence Assumption (Naı̈ve Bayes) -- 4.3.3 Lancaster Models -- 4.3.4 Maximum Weight Dependence Trees -- 4.3.5 Bayesian Networks -- 4.3.6 Example Application Study - Naı̈ve Bayes Text Classification -- 4.3.7 Summary -- 4.4 Kernel Methods -- 4.4.1 Biasedness -- 4.4.2 Multivariate Extension -- 4.4.3 Choice of Smoothing Parameter -- 4.4.4 Choice of Kernel -- 4.4.5 Example Application Study -- 4.4.6 Further Developments -- 4.4.7 Summary -- 4.5 Expansion by Basis Functions -- 4.6 Copulas -- 4.6.1 Introduction -- 4.6.2 Mathematical Basis -- 4.6.3 Copula Functions -- 4.6.4 Estimating Copula Probability Density Functions -- 4.6.5 Simple Example -- 4.6.6 Summary -- 4.7 Application Studies -- 4.7.1 Comparative Studies -- 4.8 Summary and Discussion -- 4.9 Recommendations -- 4.10 Notes and References -- Exercises -- 5 Linear Discriminant Analysis -- 5.1 Introduction -- 5.2 Two-Class Algorithms -- 5.2.1 General Ideas -- 5.2.2 Perceptron Criterion -- 5.2.3 Fisher's Criterion -- 5.2.4 Least Mean-Squared-Error Procedures -- 5.2.5 Further Developments -- 5.2.6 Summary -- 5.3 Multiclass Algorithms.
5.3.1 General Ideas -- 5.3.2 Error-Correction Procedure -- 5.3.3 Fisher's Criterion - Linear Discriminant Analysis -- 5.3.4 Least Mean-Squared-Error Procedures -- 5.3.5 Regularisation -- 5.3.6 Example Application Study -- 5.3.7 Further Developments -- 5.3.8 Summary -- 5.4 Support Vector Machines -- 5.4.1 Introduction -- 5.4.2 Linearly Separable Two-Class Data -- 5.4.3 Linearly Nonseparable Two-Class Data -- 5.4.4 Multiclass SVMs -- 5.4.5 SVMs for Regression -- 5.4.6 Implementation -- 5.4.7 Example Application Study -- 5.4.8 Summary -- 5.5 Logistic Discrimination -- 5.5.1 Two-Class Case -- 5.5.2 Maximum Likelihood Estimation -- 5.5.3 Multiclass Logistic Discrimination -- 5.5.4 Example Application Study -- 5.5.5 Further Developments -- 5.5.6 Summary -- 5.6 Application Studies -- 5.7 Summary and Discussion -- 5.8 Recommendations -- 5.9 Notes and References -- Exercises -- 6 Nonlinear Discriminant Analysis - Kernel and Projection Methods -- 6.1 Introduction -- 6.2 Radial Basis Functions -- 6.2.1 Introduction -- 6.2.2 Specifying the Model -- 6.2.3 Specifying the Functional Form -- 6.2.4 The Positions of the Centres -- 6.2.5 Smoothing Parameters -- 6.2.6 Calculation of the Weights -- 6.2.7 Model Order Selection -- 6.2.8 Simple RBF -- 6.2.9 Motivation -- 6.2.10 RBF Properties -- 6.2.11 Example Application Study -- 6.2.12 Further Developments -- 6.2.13 Summary -- 6.3 Nonlinear Support Vector Machines -- 6.3.1 Introduction -- 6.3.2 Binary Classification -- 6.3.3 Types of Kernel -- 6.3.4 Model Selection -- 6.3.5 Multiclass SVMs -- 6.3.6 Probability Estimates -- 6.3.7 Nonlinear Regression -- 6.3.8 Example Application Study -- 6.3.9 Further Developments -- 6.3.10 Summary -- 6.4 The Multilayer Perceptron -- 6.4.1 Introduction -- 6.4.2 Specifying the MLP Structure -- 6.4.3 Determining the MLP Weights -- 6.4.4 Modelling Capacity of the MLP.
6.4.5 Logistic Classification -- 6.4.6 Example Application Study -- 6.4.7 Bayesian MLP Networks -- 6.4.8 Projection Pursuit -- 6.4.9 Summary -- 6.5 Application Studies -- 6.6 Summary and Discussion -- 6.7 Recommendations -- 6.8 Notes and References -- Exercises -- 7 Rule and Decision Tree Induction -- 7.1 Introduction -- 7.2 Decision Trees -- 7.2.1 Introduction -- 7.2.2 Decision Tree Construction -- 7.2.3 Selection of the Splitting Rule -- 7.2.4 Terminating the Splitting Procedure -- 7.2.5 Assigning Class Labels to Terminal Nodes -- 7.2.6 Decision Tree Pruning - Worked Example -- 7.2.7 Decision Tree Construction Methods -- 7.2.8 Other Issues -- 7.2.9 Example Application Study -- 7.2.10 Further Developments -- 7.2.11 Summary -- 7.3 Rule Induction -- 7.3.1 Introduction -- 7.3.2 Generating Rules from a Decision Tree -- 7.3.3 Rule Induction Using a Sequential Covering Algorithm -- 7.3.4 Example Application Study -- 7.3.5 Further Developments -- 7.3.6 Summary -- 7.4 Multivariate Adaptive Regression Splines -- 7.4.1 Introduction -- 7.4.2 Recursive Partitioning Model -- 7.4.3 Example Application Study -- 7.4.4 Further Developments -- 7.4.5 Summary -- 7.5 Application Studies -- 7.6 Summary and Discussion -- 7.7 Recommendations -- 7.8 Notes and References -- Exercises -- 8 Ensemble Methods -- 8.1 Introduction -- 8.2 Characterising a Classifier Combination Scheme -- 8.2.1 Feature Space -- 8.2.2 Level -- 8.2.3 Degree of Training -- 8.2.4 Form of Component Classifiers -- 8.2.5 Structure -- 8.2.6 Optimisation -- 8.3 Data Fusion -- 8.3.1 Architectures -- 8.3.2 Bayesian Approaches -- 8.3.3 Neyman-Pearson Formulation -- 8.3.4 Trainable Rules -- 8.3.5 Fixed Rules -- 8.4 Classifier Combination Methods -- 8.4.1 Product Rule -- 8.4.2 Sum Rule -- 8.4.3 Min, Max and Median Combiners -- 8.4.4 Majority Vote -- 8.4.5 Borda Count.
8.4.6 Combiners Trained on Class Predictions.
Abstract:
Statistical pattern recognition relates to the use of statistical techniques for analysing data measurements in order to extract information and make justified decisions. It is a very active area of study and research, which has seen many advances in recent years. Applications such as data mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting recognition, all require robust and efficient pattern recognition techniques. This third edition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields, including the areas of engineering, statistics, computer science and the social sciences. The book has been updated to cover new methods and applications, and includes a wide range of techniques such as Bayesian methods, neural networks, support vector machines, feature selection and feature reduction techniques.Technical descriptions and motivations are provided, and the techniques are illustrated using real examples. Statistical Pattern Recognition, 3rd Edition: Provides a self-contained introduction to statistical pattern recognition. Includes new material presenting the analysis of complex networks. Introduces readers to methods for Bayesian density estimation. Presents descriptions of new applications in biometrics, security, finance and condition monitoring. Provides descriptions and guidance for implementing techniques, which will be invaluable to software engineers and developers seeking to develop real applications Describes mathematically the range of statistical pattern recognition techniques. Presents a variety of exercises including more extensive computer projects. The in-depth technical descriptions make the book suitable for senior undergraduate and graduate students in statistics, computer science and engineering. Statistical
Pattern Recognition is also an excellent reference source for technical professionals. Chapters have been arranged to facilitate implementation of the techniques by software engineers and developers in non-statistical engineering fields. www.wiley.com/go/statistical_pattern_recognition.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Genre:
Electronic Access:
Click to View