
Understanding Microelectronics : A Top-Down Approach.
Title:
Understanding Microelectronics : A Top-Down Approach.
Author:
Maloberti, Franco.
ISBN:
9781119976486
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (696 pages)
Contents:
CONTENTS -- Preface -- List of Abbreviations -- Chapter 1 OVERVIEW, GOALS AND STRATEGY -- 1.1 GOOD MORNING -- 1.2 PLANNING THE TRIP -- 1.3 ELECTRONIC SYSTEMS -- 1.3.1 Meeting a System -- 1.4 TRANSDUCERS -- 1.4.1 Sensors -- 1.4.2 Actuators -- 1.5 WHAT IS THE ROLE OF THE COMPUTER? -- 1.6 GOAL AND LEARNING STRATEGIES -- 1.6.1 Teamwork Attitude -- 1.6.2 Creativity and Execution -- 1.6.3 Use of Simulation Tools -- 1.7 SELF TRAINING, EXAMPLES AND SIMULATIONS -- 1.7.1 Role of Examples and Computer Simulations -- 1.8 BUSINESS ISSUES, COMPLEXITY AND CAD TOOLS -- 1.8.1 CAD Tools -- 1.8.2 Analog Simulator -- 1.8.3 Device and Macro-block Models -- 1.8.4 Digital Simulation -- 1.9 ELECTRONIC VIRTUAL STUDENT LAB (ElvisLab) -- PROBLEMS -- Chapter 2 SIGNALS -- 2.1 INTRODUCTION -- 2.2 TYPES OF SIGNALS -- 2.3 TIME AND FREQUENCY DOMAINS -- 2.4 CONTINUOUS-TIME AND DISCRETE-TIME SIGNALS -- 2.4.1 The Sampling Theorem -- 2.5 USING SAMPLED-DATA SIGNALS -- 2.5.1 The z-transform -- 2.6 DISCRETE-AMPLITUDE SIGNALS -- 2.6.1 Quantized Signal Coding -- 2.7 SIGNALS REPRESENTATION -- 2.7.1 The Decibel -- 2.8 DFT AND FFT -- 2.9 WINDOWING -- 2.10 GOOD AND BAD SIGNALS -- 2.10.1 Offset -- 2.10.2 Interference -- 2.10.3 Harmonic Distortion -- 2.10.4 Noise -- 2.11 THD, SNR, SNDR, DYNAMIC RANGE -- PROBLEMS -- ADDITIONAL COMPUTER EXAMPLES -- Chapter 3 ELECTRONIC SYSTEMS -- 3.1 INTRODUCTION -- 3.2 ELECTRONICS FOR ENTERTAINMENT -- 3.2.1 Electronic Toys -- 3.2.2 Video Game and Game Console -- 3.2.3 Personal Media Player -- 3.3 SYSTEMS FOR COMMUNICATION -- 3.3.1 Wired Communication Systems -- 3.3.2 Wireless: Voice, Video and Data -- 3.3.3 RFID -- 3.4 COMPUTATION AND PROCESSING -- 3.4.1 Microprocessor -- 3.4.2 Digital Signal Processor -- 3.4.3 Data Storage -- 3.5 MEASURE, SAFETY, AND CONTROL -- 3.5.1 The Weather Station -- 3.5.2 Data Fusion -- 3.5.3 Systems for Automobile Control.
3.5.4 Noise-canceling Headphones -- 3.6 SYSTEM PARTITIONING -- 3.7 SYSTEM TESTING -- PROBLEMS -- ADDITIONAL COMPUTER EXAMPLES -- Chapter 4 SIGNAL PROCESSING -- 4.1 WHAT IS SIGNAL PROCESSING? -- 4.2 LINEAR AND NON-LINEAR PROCESSING -- 4.3 ANALOG AND DIGITAL PROCESSING -- 4.3.1 Timing for Signal Processing -- 4.4 RESPONSE OF LINEAR SYSTEMS -- 4.4.1 Time Response of Linear Systems -- 4.4.2 Frequency Response of Linear Systems -- 4.4.3 Transfer Function -- 4.5 BODE DIAGRAM -- 4.5.1 Amplitude Bode Diagram -- 4.5.2 Phase Bode Diagram -- 4.6 FILTERS -- 4.6.1 Analog Design and Sensitivity -- 4.6.2 Sampled-data Analog and Digital Design -- 4.7 NON-LINEAR PROCESSING -- PROBLEMS -- ADDITIONAL COMPUTER EXAMPLES -- Chapter 5 CIRCUITS FOR SYSTEMS -- 5.1 INTRODUCTION -- 5.2 PROCESSING WITH ELECTRONIC CIRCUITS -- 5.2.1 Electronic Interfaces -- 5.2.2 Driving Capability -- 5.2.3 Electrostatic Discharge Protection -- 5.2.4 DC and AC Coupling -- 5.2.5 Ground and Ground for Signal -- 5.2.6 Single-ended and Differential Circuits -- 5.3 INSIDE ANALOG ELECTRONIC BLOCKS -- 5.3.1 Simple Continuous-time Filters -- 5.3.2 Two-Pole Filters -- 5.4 CONTINUOUS-TIME LINEAR BASIC FUNCTIONS -- 5.4.1 Addition of Signals -- 5.4.2 The Virtual Ground Concept -- 5.4.3 Multiplication by a Constant -- 5.4.4 Integration and Derivative -- 5.5 CONTINUOUS-TIME NON-LINEAR BASIC FUNCTIONS -- 5.5.1 Threshold Detection -- 5.5.2 Analog Multiplier -- 5.6 ANALOG DISCRETE-TIME BASIC OPERATIONS -- 5.7 LIMITS IN REAL ANALOG CIRCUITS -- 5.8 CIRCUITS FOR DIGITAL DESIGN -- 5.8.1 Symbols of Digital Blocks -- 5.8.2 Implementation of Digital Functions -- PROBLEMS -- Chapter 6 ANALOG PROCESSING BLOCKS -- 6.1 INTRODUCTION -- 6.2 CHOOSING THE PART -- 6.3 OPERATIONAL AMPLIFIER -- 6.3.1 Ideal Operation -- 6.4 OP-AMP DESCRIPTION -- 6.4.1 General Description -- 6.4.2 Absolute Maximum Ratings and Operating Rating.
6.4.3 Electrical Characteristics -- 6.4.4 Packaging and Board Assembly -- 6.4.5 Small-signal Equivalent Circuit -- 6.5 USE OF OPERATIONAL AMPLIFIERS -- 6.5.1 Inverting Amplifier -- 6.5.2 Non-inverting Amplifier -- 6.5.3 Superposing Inverting and Non-inverting Amplification -- 6.5.4 Weighted Addition of Signals (with Inversion) -- 6.5.5 Unity Gain Buffer -- 6.5.6 Integration and Derivative -- 6.5.7 Generalized Amplifier -- 6.6 OPERATION WITH REAL OP-AMPS -- 6.6.1 Input Offset -- 6.6.2 Finite Gain -- 6.6.3 Non-ideal Input and Output Impedances -- 6.6.4 Finite Bandwidth -- 6.6.5 Slew-rate Output Clipping and Non-linear Gain -- 6.7 OPERATIONAL TRANSCONDUCTANCE AMPLIFIER -- 6.7.1 Use of the OTA -- 6.8 COMPARATOR -- 6.8.1 Comparator Data Sheet -- 6.8.2 Clocked Comparator -- PROBLEMS -- Chapter 7 DATA CONVERTERS -- 7.1 INTRODUCTION -- 7.2 TYPES AND SPECIFICATIONS -- 7.2.1 General Features -- 7.2.2 Electrical Static Specifications -- 7.2.3 Electrical Dynamic Specifications -- 7.2.4 Digital and Switching Data -- 7.3 FILTERS FOR DATA CONVERSION -- 7.3.1 Anti-aliasing and Reconstruction Filters -- 7.3.2 Oversampling and Digital Filters -- 7.4 NYQUIST-RATE DAC -- 7.4.1 Resistor-based Architectures -- 7.4.2 Capacitance-based Architectures -- 7.4.3 Parasitic Insensitivity -- 7.4.4 Hybrid Resistive-capacitive Architectures -- 7.4.5 Current-based Architectures -- 7.5 NYQUIST-RATE ADC -- 7.5.1 Flash Converter -- 7.5.2 Two-step Flash -- 7.5.3 Pipeline Converters -- 7.5.4 Slow Converters -- 7.6 OVERSAMPLED CONVERTER -- 7.6.1 Quantization Error and Quantization Noise -- 7.6.2 Benefit of the Noise View -- 7.6.3 Sigma-Delta Modulators -- 7.7 DECIMATION AND INTERPOLATION -- PROBLEMS -- Chapter 8 DIGITAL PROCESSING CIRCUITS -- 8.1 INTRODUCTION -- 8.2 DIGITAL WAVEFORMS -- 8.2.1 Data Transfer and Data Communication -- 8.2.2 Propagation Delay.
8.2.3 Asynchronous and Synchronous Operation -- 8.3 COMBINATIONAL AND SEQUENTIAL CIRCUITS -- 8.3.1 Combinational Circuits -- 8.3.2 Sequential Circuits -- 8.4 DIGITAL ARCHITECTURES WITH MEMORIES -- 8.5 LOGIC AND ARITHMETIC FUNCTIONS -- 8.5.1 Adder and Subtracter -- 8.5.2 Multiplier -- 8.5.3 Registers and Counters -- 8.6 CIRCUIT DESIGN STYLES -- 8.6.1 Complex Programmable Logic Devices (CPLDs) and FPGAs -- 8.7 MEMORY CIRCUITS -- 8.7.1 Random-access Memory Organization and Speed -- 8.7.2 Types of Memories -- 8.7.3 Circuits for Memories -- PROBLEMS -- Chapter 9 BASIC ELECTRONIC DEVICES -- 9.1 INTRODUCTION -- 9.2 THE DIODE -- 9.2.1 Equivalent Circuit -- 9.2.2 Parasitic Junction Capacitance -- 9.2.3 Zener and Avalanche Breakdown -- 9.2.4 Doping and p-n Junction -- 9.2.5 Diode in Simple Circuits -- 9.3 THE MOS TRANSISTOR -- 9.3.1 MOS Physical Structure -- 9.3.2 Voltage-current Relationship -- 9.3.3 Approximating the I-V Equation -- 9.3.4 Parasitic Effects -- 9.3.5 Equivalent Circuit -- 9.4 MOS TRANSISTOR IN SIMPLE CIRCUITS -- 9.5 THE BIPOLAR JUNCTION TRANSISTOR (BJT) -- 9.5.1 The BJT Physical Structure -- 9.5.2 BJT Voltage-current Relationships -- 9.5.3 Bipolar Transistor Model and Parameters -- 9.5.4 Darlington Configuration -- 9.5.5 Small-signal Equivalent Circuit of the Bipolar Transistor -- 9.6 BIPOLAR TRANSISTOR IN SIMPLE CIRCUITS -- 9.7 THE JUNCTION FIELD-EFFECT TRANSISTOR (JFET) -- 9.8 TRANSISTORS FOR POWER MANAGEMENT -- PROBLEMS -- Chapter 10 ANALOG BUILDING CELLS -- 10.1 INTRODUCTION -- 10.2 USE OF SMALL-SIGNAL EQUIVALENT CIRCUITS -- 10.3 INVERTING VOLTAGE AMPLIFIER -- 10.4 MOS INVERTER WITH RESISTIVE LOAD -- 10.4.1 Small-signal Analysis of the CMOS Inverter -- 10.5 CMOS INVERTER WITH ACTIVE LOAD -- 10.5.1 CMOS Inverter with Active Load: Small-signal Analysis -- 10.6 INVERTING AMPLIFIER WITH BIPOLAR TRANSISTORS.
10.6.1 Small-signal Analysis of BJT Inverters -- 10.7 SOURCE AND EMITTER FOLLOWER -- 10.7.1 Small-signal Equivalent Circuit of Source and Emitter Follower -- 10.7.2 Small-signal Input and Output Resistance -- 10.8 CASCODE WITH ACTIVE LOAD -- 10.8.1 Equivalent Resistances -- 10.8.2 Cascode with Cascode Load -- 10.9 DIFFERENTIAL PAIR -- 10.10 CURRENT MIRROR -- 10.10.1 Equivalent Circuit -- 10.10.2 Current Mirror with High Output Resistance -- 10.10.3 Differential to Single-ended Converter -- 10.11 REFERENCE GENERATORS -- PROBLEMS -- Chapter 11 DIGITAL BUILDING CELLS -- 11.1 INTRODUCTION -- 11.2 LOGIC GATES -- 11.2.1 Gate Specifications -- 11.3 BOOLEAN ALGEBRA AND LOGIC COMBINATIONS -- 11.4 COMBINATIONAL LOGIC CIRCUITS -- 11.4.1 Exclusive-OR and Exclusive-NOR -- 11.4.2 Half-adder and Full-adder -- 11.4.3 Logic Comparators -- 11.4.4 Decoders -- 11.4.5 Parity Generator and Parity Checker -- 11.5 SEQUENTIAL LOGIC CIRCUITS -- 11.5.1 Latch -- 11.5.2 Gated Latch -- 11.5.3 Edge-triggered Flip-flop -- 11.5.4 Master-slave Flip-flop -- 11.6 FLIP-FLOP SPECIFICATIONS -- 11.7 TRANSISTOR SCHEMES OF LOGIC CELLS -- 11.7.1 CMOS Inverter -- 11.7.2 Dynamic Response of CMOS Inverters -- 11.7.3 Power Consumption -- 11.7.4 NOR and NAND -- 11.7.5 Pass-gate Logic -- 11.7.6 Tri-state Gates -- 11.7.7 Dynamic Logic Circuits -- PROBLEMS -- Chapter 12 FEEDBACK -- 12.1 INTRODUCTION -- 12.2 GENERAL CONFIGURATION -- 12.2.1 Linear Feedback Systems -- 12.3 PROPERTIES OF NEGATIVE FEEDBACK -- 12.3.1 Gain Sensitivity -- 12.3.2 Bandwidth Improvement -- 12.3.3 Reducing Distortion -- 12.3.4 Noise Behavior -- 12.4 TYPES OF FEEDBACK -- 12.4.1 Real Input and Output Ports -- 12.4.2 Input and Output Resistances -- 12.5 STABILITY -- 12.5.1 Frequency Response of Feedback Circuits -- 12.5.2 Gain and Phase Margins -- 12.5.3 Compensation of Operational Ampli.ers -- 12.6 FEEDBACK NETWORKS -- PROBLEMS.
Chapter 13 POWER CONVERSION AND POWER MANAGEMENT.
Abstract:
The microelectronics evolution has given rise to many modern benefits but has also changed design methods and attitudes to learning. Technology advancements shifted focus from simple circuits to complex systems with major attention to high-level descriptions. The design methods moved from a bottom-up to a top-down approach. For today's students, the most beneficial approach to learning is this top-down method that demonstrates a global view of electronics before going into specifics. Franco Maloberti uses this approach to explain the fundamentals of electronics, such as processing functions, signals and their properties. Here he presents a helpful balance of theory, examples, and verification of results, while keeping mathematics and signal processing theory to a minimum. Key features: Presents a new learning approach that will greatly improve students' ability to retain key concepts in electronics studies Match the evolution of Computer Aided Design (CAD) which focuses increasingly on high-level design Covers sub-functions as well as basic circuits and basic components Provides real-world examples to inspire a thorough understanding of global issues, before going into the detail of components and devices Discusses power conversion and management; an important area that is missing in other books on the subject End-of-chapter problems and self-training sections support the reader in exploring systems and understanding them at increasing levels of complexity A supporting website (http://www.wiley.com/WileyCDA/WileyTitle/productCd-047074555X,descCd-relatedWebsites.html) presents the interactive student lab, ElvisLAB, where students can conduct virtual experiments on circuits together with PowerPoint slides for lecturers. Inside this book you will find a complete explanation of electronics that can be applied across a range of
disciplines including electrical engineering and physics. This comprehensive introduction will be of benefit to students studying electronics, as well as their lecturers and professors. Postgraduate engineers, those in vocational training, and design and application engineers will also find this book useful.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View