Cover image for Organic Electronics II : More Materials and Applications.
Organic Electronics II : More Materials and Applications.
Title:
Organic Electronics II : More Materials and Applications.
Author:
Klauk, Hagen.
ISBN:
9783527640232
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (442 pages)
Contents:
Organic Electronics II -- Contents -- Preface -- List of Contributors -- Part I Materials -- 1 Organic Semiconductor Materials for Transistors -- 1.1 General Considerations -- 1.2 Materials Properties of Organic Semiconductors -- 1.3 Small Molecule Semiconductors -- 1.3.1 Sexithiophene -- 1.3.2 Pentacene and Derivatives -- 1.4 Polymer Semiconductors -- 1.4.1 Thiophene-Based Polymers -- 1.4.1.1 Poly(3-Alkylthiophenes) -- 1.4.1.2 Thienothiophene Copolymers -- 1.4.1.3 pBTTT -- 1.5 Semiconductor Blends -- 1.6 Device Physics and Architecture -- 1.7 Summary -- References -- 2 Characterization of Order and Orientation in Semiconducting Polymers -- 2.1 Introduction -- 2.2 X-Ray Diffraction -- 2.2.1 Thin-Film XRD -- 2.2.2 Grazing-Incidence X-Ray Diffraction (GIXD) -- 2.3 Near-Edge X-Ray Absorption Fine Structure (NEXAFS) Spectroscopy -- 2.3.1 Background and General Features of NEXAFS -- 2.3.1.1 NEXAFS Experimental Considerations -- 2.3.1.2 Chemistry Determination by NEXAFS -- 2.3.1.3 Orientation Analysis in Organic Semiconductors -- 2.3.2 Horizons for NEXAFS -- References -- 3 Charge Transport Theories in Organic Semiconductors -- 3.1 Introduction -- 3.2 Well-Ordered Systems: Organic Single Crystals -- 3.2.1 General Conditions for Band Transport -- 3.2.2 Experimental Evidence for Band Transport in Organic Crystals -- 3.2.3 Band or Bandlike? -- 3.3 Disordered Materials -- 3.3.1 Different Types of Disorder -- 3.3.2 Effect of Disorder on Charge Transport -- 3.3.2.1 Dispersive and Nondispersive Transport -- 3.3.2.2 Transport Models -- 3.3.2.3 Computational Methods -- 3.3.2.4 Comparison with Experiments -- 3.4 Conclusions -- Acknowledgments -- References -- 4 Silylethyne-Substituted Acenes and Heteroacenes -- 4.1 Introduction -- 4.2 Silylethyne-Substituted Pentacenes -- 4.3 Crystal Packing -- 4.3.1 Properties of Silylethyne-Substituted Pentacenes.

4.3.2 Electronic Structure Studies -- 4.3.3 Device Studies -- 4.3.4 Blends of Silylethynyl Pentacenes and Polymers -- 4.3.5 Silylethyne Pentacene-Based Polymers -- 4.3.6 Organic Light Emitting Diodes and Photovoltaics Using Silylethynyl Pentacenes -- 4.3.7 Silylethynyl Pentacene n-Type Semiconductors -- 4.3.8 Other Silylethyne-Substituted Acenes in Organic Electronics -- 4.4 Heteroacenes -- 4.4.1 Silylethyne-Substituted Heteroacenes -- 4.4.2 Crystal Packing -- 4.4.3 Device Studies -- 4.4.4 Silylethynyl Heteroacenes for n-Type Applications -- 4.4.5 Blends of Silylethyne-Substituted Heteroacenes and Polymers -- 4.5 Silylethynyl Heteroacene-Based Polymers -- 4.6 Silylethynyl Heteroacene-Based Photovoltaics -- 4.7 Conclusion -- References -- 5 Conjugated Semiconductors for Organic n-Channel Transistors and Complementary Circuits -- 5.1 Introduction -- 5.2 Basics of Field-Effect Transistors and Complementary Circuits -- 5.2.1 Field-Effect Transistors -- 5.2.2 Complementary Circuits -- 5.3 Material Design and Needs for n-Channel OTFTs -- 5.3.1 Electronic Structure -- 5.3.2 Contacts and Dielectric -- 5.4 n-Channel Semiconductors for OTFTs -- 5.4.1 Molecular Semiconductors -- 5.4.1.1 Phthalocyanine Derivatives -- 5.4.1.2 Thiophene Derivatives -- 5.4.1.3 Fullerenes -- 5.4.1.4 Rylene and Other Diimide Derivatives -- 5.4.1.5 Other Small Molecular n-Channel Semiconductors -- 5.4.2 Polymeric Semiconductors -- 5.5 Conclusions and Outlook -- References -- 6 Low-Voltage Electrolyte-Gated OTFTs and Their Applications -- 6.1 Overview -- 6.2 Introduction to Electrolyte-Gated Organic Transistors -- 6.2.1 Structure and Operating Mechanisms -- 6.2.2 The Development of Electrolyte-Gated Transistors -- 6.2.3 More on the Gating Mechanism in Electrolyte-Gated Transistors -- 6.2.4 Electrical Characterization of Electrolyte-Gated OTFTs -- 6.2.4.1 Low-Voltage Operation.

6.2.4.2 Use of a Reference Electrode -- 6.2.4.3 Determination of Accumulated Charge -- 6.2.4.4 Switching Time -- 6.2.5 Charge Transport at Ultrahigh Carrier Densities -- 6.3 Applications of Electrolyte-Gated Organic Transistors -- 6.3.1 Printable Low-Voltage Polymer Transistors and Circuits -- 6.3.2 Active-Matrix Display Backplanes -- 6.3.3 Organic Electrochemical Transistors as Chemical Sensors -- 6.4 Conclusions and Outlook -- References -- Part II Manufacturing -- 7 Printing Techniques for Thin-Film Electronics -- 7.1 The Motivation for Printing of Thin-Film Electronic Devices -- 7.2 Requirements for Printing Techniques for Electronics Fabrication -- 7.3 A Survey of Printing Techniques for Printed Electronics -- 7.3.1 Screen Printing -- 7.3.2 Gravure/Flexographic/Offset Printing -- 7.3.3 Ink-jet Printing -- 7.4 Pattern Formation During Printing -- 7.5 Printed Device Considerations -- References -- 8 Picoliter and Subfemtoliter Ink-jet Technologies for Organic Transistors -- 8.1 Introduction -- 8.2 Silver Nanoparticle Ink -- 8.3 Ink-jet Technologies with Pico- and Subfemtoliter Accuracies -- 8.3.1 Picoliter Ink-jet Printing -- 8.3.2 Subfemtoliter Ink-jet -- 8.3.2.1 Ejection Mechanism -- 8.3.2.2 Subfemtoliter Droplets on Organic Semiconductors -- 8.4 Manufacturing Processes and Electrical Characteristics of Organic Transistors -- 8.4.1 Organic Transistors with Source/Drain Electrodes Printed Using Picoliter Ink-jet -- 8.4.1.1 Transistor Characteristics with Changing Droplet Volume -- 8.4.1.2 Printed Organic Transistor Active Matrix Using Picoliter Ink-jet -- 8.4.1.3 A Large-Area Pressure Sensor Sheet -- 8.4.2 Organic Transistors with Source/Drain Electrodes Printed Using Subfemtoliter Ink-jet -- 8.4.2.1 TFTs on Polyimide Gate Dielectric -- 8.4.2.2 TFTs with Self-Assembled Monolayer as a Very Thin Gate Dielectric.

8.5 Discussion and Future Prospects of Large-Area Printed Electronics -- Acknowledgments -- References -- 9 Ink-jet Printing of Downscaled Organic Electronic Devices -- 9.1 Introduction -- 9.2 Ink-Jet Printing: Technologies, Tools, and Materials -- 9.2.1 Principle of Operation of Ink-Jet Printers -- 9.2.2 Continuous Ink-Jet Printing Technologies -- 9.2.2.1 Continuous Ink-Jet Printing -- 9.2.2.2 Aerosol Jet Printing -- 9.2.3 DOD Ink-Jet Printing Technologies -- 9.2.3.1 Thermal Ink-Jet Printing -- 9.2.3.2 Piezoelectric Ink-Jet Printing -- 9.2.3.3 Acoustic Ink-Jet Printing -- 9.2.3.4 Electrohydrodynamic-Jet (e-Jet) Printing -- 9.2.4 Conductive Inks for Ink-Jet Printing of Electrodes and Interconnections -- 9.2.5 Ink-Jet Printing of Organic Electronic Devices -- 9.2.5.1 Fabrication of OLEDs by Ink-Jet Printing -- 9.2.5.2 Fabrication of Organic Thin Film Transistors by Ink-Jet Printing -- 9.2.5.3 Fabrication of Organic Photovoltaic Cells by Ink-Jet Printing -- 9.2.5.4 Other Organic Devices -- 9.3 High-Resolution Printing of Highly Conductive Electrodes -- 9.3.1 Ink-Jet Printing of Narrow Linewidths -- 9.3.2 Ink-Jet Printing Assisted by Surface-Energy Patterns -- 9.3.3 Self-Aligned Printing -- 9.3.4 High Yield Printing of Single-Droplet Nanoscale Electrode Arrays -- 9.4 Printing of Downscaled Organic Thin Film Transistors -- 9.4.1 Downscaling Requirements -- 9.4.2 Gate Dielectrics for Downscaled Organic TFTs -- 9.4.2.1 High-k Dielectrics -- 9.4.2.2 Ultra-Thin Dielectrics -- 9.4.3 Organic TFTs Printed with Subfemtoliter Printer -- 9.4.4 Mask-Free, All Solution Processed SAP TFTs -- 9.4.5 Self-Aligned Gate Contacts for Fast-Switching Transistors -- 9.5 Conclusions and Outlook -- Acknowledgments -- References -- 10 Interplay between Processing, Structure, and Electronic Properties in Soluble Small-Molecule Organic Semiconductors -- 10.1 Introduction.

10.2 Transport Limits in Crystalline Semiconductors -- 10.2.1 Crystallinity - Role of Structural Order -- 10.2.2 Grain Boundaries -- 10.2.3 Single Crystals - Model Systems to Study Intrinsic Properties of Organic Semiconductors -- 10.3 Structure-Processing-Properties Relationship in Small-Molecule Organic Thin-Film Transistors -- 10.3.1 Microstructure and Mobility -- 10.3.2 Controlling Film Morphology by Surface Chemical Modifications -- 10.3.3 Processing Parameters Affecting Electrical Properties -- 10.3.3.1 Deposition Method -- 10.3.3.2 Solvent -- 10.4 Advanced Film Processing -- 10.4.1 How Sensibility to Processing Details Can Be Advantageous -- 10.4.2 Solvent Annealing -- 10.4.3 Deposition under Solvent Vapors -- 10.4.4 Patterning Organic Thin-Film Transistors -- 10.5 Summary -- References -- Part III Applications -- 11 Light-Emitting Organic Transistors -- 11.1 Introduction -- 11.2 Unipolar Light-Emitting FETs -- 11.3 Ambipolar Light-Emitting FETs -- 11.3.1 Ambipolar Device Characteristics -- 11.3.2 Ambipolar Blends with Bulk Heterojunctions -- 11.3.3 Double Layers and Lateral Heterojunctions -- 11.3.4 Single Semiconductor Ambipolar FETs -- 11.3.4.1 Intrinsic Ambipolar Transport in Organic Semiconductors -- 11.3.4.2 Ambipolar FETs with Asymmetric Electrodes -- 11.3.4.3 Ambipolar FETs with Narrow Bandgap Semiconductors -- 11.3.4.4 Ambipolar FETs with Bottom Contact/Top Gate Electrodes -- 11.3.5 Device Modeling -- 11.3.6 Toward Electrically Pumped Organic Lasers -- 11.4 Other Field-Effect-Based Light-Emitting Devices -- 11.4.1 Vertical Light-Emitting Transistors -- 11.4.2 Field-Effect Enhanced LEDs -- 11.5 Conclusions -- Acknowledgments -- References -- 12 Design Methodologies for Organic RFID Tags and Sensor Readout on Foil -- 12.1 Introduction -- 12.2 Organic RFID Tags -- 12.2.1 Capacitively Coupled RFID Tags.

12.2.2 Inductively Coupled RFID Tags.
Abstract:
Like its predecessor this book is devoted to the materials, manufacturing and applications aspects of organic thin-film transistors. Once again authored by the most renowned experts from this fascinating and fast-moving area of research, it offers a joint perspective both broad and in-depth on the latest developments in the areas of materials chemistry, transport physics, materials characterization, manufacturing technology, and circuit integration of organic transistors. With its many figures and detailed index, this book once again also serves as a ready reference.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: