Cover image for Anion Coordination Chemistry.
Anion Coordination Chemistry.
Title:
Anion Coordination Chemistry.
Author:
Bowman-James, Kristin.
ISBN:
9783527639526
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (575 pages)
Series:
Annual Reviews of Nonlinear Dynamics and Complexity (VCH)
Contents:
Anion Coordination Chemistry -- Contents -- Preface -- List of Contributors -- 1 Aspects of Anion Coordination from Historical Perspectives -- 1.1 Introduction -- 1.2 Halide and Pseudohalide Anions -- 1.3 Oxoanions -- 1.4 Phosphate and Polyphosphate Anions -- 1.5 Carboxylate Anions and Amino Acids -- 1.6 Anionic Complexes: Supercomplex Formation -- 1.7 Nucleotides -- 1.8 Final Notes -- References -- 2 Thermodynamic Aspects of Anion Coordination -- 2.1 Introduction -- 2.2 Parameters Determining the Stability of Anion Complexes -- 2.2.1 Type of Binding Group: Noncovalent Forces in Anion Coordination -- 2.2.2 Charge of Anions and Receptors -- 2.2.3 Number of Binding Groups -- 2.2.3.1 Additivity of Noncovalent Forces -- 2.2.4 Preorganization -- 2.2.4.1 Macrocyclic Effect -- 2.2.5 Solvent Effects -- 2.3 Molecular Recognition and Selectivity -- 2.4 Enthalpic and Entropic Contributions in Anion Coordination -- References -- 3 Structural Aspects of Anion Coordination Chemistry -- 3.1 Introduction -- 3.2 Basic Concepts of Anion Coordination Chemistry -- 3.3 Classes of Anion Hosts -- 3.4 Acycles -- 3.4.1 Bidentate -- 3.4.2 Tridentate -- 3.4.3 Tetradentate -- 3.4.4 Pentadentate -- 3.4.5 Hexadentate -- 3.5 Monocycles -- 3.5.1 Bidentate -- 3.5.2 Tridentate -- 3.5.3 Tetradentate -- 3.5.4 Pentadentate -- 3.5.5 Hexadentate -- 3.5.6 Octadentate -- 3.5.7 Dodecadentate -- 3.6 Cryptands -- 3.6.1 Bidentate -- 3.6.2 Tridentate -- 3.6.3 Tetradentate -- 3.6.4 Pentadentate -- 3.6.5 Hexadentate -- 3.6.6 Septadentate -- 3.6.7 Octadentate -- 3.6.8 Nonadentate -- 3.6.9 Decadentate -- 3.6.10 Dodecadentate -- 3.7 Transition-Metal-Assisted Ligands -- 3.7.1 Bidentate -- 3.7.2 Tridentate -- 3.7.3 Tetradentate -- 3.7.4 Hexadentate -- 3.7.5 Septadentate -- 3.7.6 Dodecadentate -- 3.8 Lewis Acid Ligands -- 3.8.1 Transition Metal Cascade Complexes.

3.8.2 Other Lewis Acid Donor Ligands -- 3.8.2.1 Boron-Based Ligands -- 3.8.2.2 Tin-Based Ligands -- 3.8.2.3 Hg-Based Ligands -- 3.9 Conclusion -- Acknowledgments -- References -- 4 Synthetic Strategies -- 4.1 Introduction -- 4.2 Design and Synthesis of Polyamine-Based Receptors for Anions -- 4.2.1 Acyclic Polyamine Receptors -- 4.2.2 Tripodal Polyamine Receptors -- 4.2.3 Macrocyclic Polyamine Receptors with Aliphatic Skeletons -- 4.2.4 Macrocyclic Receptors Incorporating a Single Aromatic Unit -- 4.2.5 Macrocyclic Receptors Incorporating Two Aromatic Units -- 4.2.6 Anion Receptors Containing Separated Macrocyclic Binding Units -- 4.2.7 Cryptands -- 4.3 Design and Synthesis of Amide Receptors -- 4.3.1 Acid Halides as Starting Materials -- 4.3.1.1 Acyclic Amide Receptors -- 4.3.1.2 Macrocyclic Amide Receptors -- 4.3.2 Esters as Starting Materials -- 4.3.3 Using Coupling Reagents -- References -- 5 Template Synthesis -- 5.1 Introductory Remarks -- 5.2 Macrocyclic Systems -- 5.3 Bowl-Shaped Systems -- 5.4 Capsule, Cage, and Tube-Shaped Systems -- 5.5 Circular Helicates and meso-Helicates -- 5.6 Mechanically Linked Systems -- 5.7 Concluding Remarks -- References -- 6 Anion-ð Interactions in Molecular Recognition -- 6.1 Introduction -- 6.2 Physical Nature of the Interaction -- 6.3 Energetic and Geometric Features of the Interaction Depending on the Host (Aromatic Moieties) and the Guest (Anions) -- 6.4 Influence of Other Noncovalent Interactions on the Anion-ð Interaction -- 6.4.1 Interplay between Cation-ð and Anion-ð Interactions -- 6.4.2 Interplay between ð-ð and Anion-ð Interactions -- 6.4.3 Interplay between Anion-ð and Hydrogen-Bonding Interactions -- 6.4.4 Influence of Metal Coordination on the Anion-ð Interaction -- 6.5 Experimental Examples of Anion-ð Interactions in the Solid State and in Solution -- 6.6 Concluding Remarks -- References.

7 Receptors for Biologically Relevant Anions -- 7.1 Introduction -- 7.2 Phosphate Receptors -- 7.2.1 Introduction -- 7.2.2 Phosphate, Pyrophosphate, Triphosphate -- 7.2.3 Nucleotides -- 7.2.4 Phosphate Esters -- 7.2.5 Polynucleotides -- 7.3 Carboxylate Receptors -- 7.3.1 Introduction -- 7.3.2 Acetate -- 7.3.3 Di- and Tricarboxylates -- 7.3.4 Amino Acids -- 7.3.5 Peptide C-Terminal Carboxylates -- 7.3.6 Peptide Side-Chain Carboxylates -- 7.3.7 Sialic Acids -- 7.4 Conclusion -- References -- 8 Synthetic Amphiphilic Peptides that Self-Assemble to Membrane-Active Anion Transporters -- 8.1 Introduction and Background -- 8.2 Biomedical Importance of Chloride Channels -- 8.2.1 A Natural Chloride Complexing Agent -- 8.3 The Development of Synthetic Chloride Channels -- 8.3.1 Cations, Anions, Complexation, and Transport -- 8.3.2 Anion Complexation Studies -- 8.3.3 Transport of Ions -- 8.3.4 Synthetic Chloride Transporters -- 8.4 Approaches to Synthetic Chloride Channels -- 8.4.1 Tomich's Semisynthetic Peptides -- 8.4.2 Cyclodextrin as a Synthetic Channel Design Element -- 8.4.3 Azobenzene as a Photo-Switchable Gate -- 8.4.4 Calixarene-Derived Chloride Transporters -- 8.4.5 Oligophenylenes and ð-Slides -- 8.4.6 Cholapods as Ion Transporters -- 8.4.7 Transport Mediated by Isophthalamides and Dipicolinamides -- 8.5 The Development of Amphiphilic Peptides as Anion Channels -- 8.5.1 The Bilayer Membrane -- 8.5.2 Initial Design Criteria for Synthetic Anion Transporters (SATs) -- 8.5.3 Synthesis of the N-Terminal Anchor Module -- 8.5.4 Preparation of the Heptapeptide -- 8.5.5 Initial Assessment of Ion Transport -- 8.6 Structural Variations in the SAT Modular Elements -- 8.6.1 Variations in the N-Terminal Anchor Chains -- 8.6.2 Anchoring Effect of the C-Terminal Residue -- 8.6.3 Studies of Variations in the Peptide Module.

8.6.3.1 Structural Variations in the Heptapeptide -- 8.6.3.2 Variations in the Gly-Pro Peptide Length and Sequence -- 8.6.4 Variations in the Anchor Chain to Peptide Linker Module -- 8.6.5 Covalent Linkage of SATs: Pseudo-Dimers -- 8.6.6 Chloride Binding by the Amphiphilic Heptapeptides -- 8.6.7 The Effect on Transport of Charged Sidechains -- 8.6.8 Fluorescent Probes of SAT Structure and Function -- 8.6.8.1 Aggregation in Aqueous Suspension and in the Bilayer -- 8.6.8.2 Fluorescence Resonance Energy Transfer Studies -- 8.6.8.3 Insertion of SATs into the Bilayer -- 8.6.8.4 Position of SATs in the Bilayer -- 8.6.9 Self-Assembly Studies of the Amphiphiles -- 8.6.10 The Biological Activity of Amphiphilic Peptides -- 8.6.11 Nontransporter, Membrane-Active Compounds -- 8.7 Conclusions -- Acknowledgments -- References -- 9 Anion Sensing by Fluorescence Quenching or Revival -- 9.1 Introduction -- 9.2 Anion Recognition by Dynamic and Static Quenching of Fluorescence -- 9.3 Fluorescent Sensors Based on Anthracene and on a Polyamine Framework -- 9.4 Turning on Fluorescence with the Indicator Displacement Approach -- 9.4.1 Epilog -- References -- Index.
Abstract:
Building on the pioneering work in supramolecular chemistry from the last 20 years or so, this monograph addresses new and recent approaches to anion coordination chemistry. Synthesis of receptors, biological receptors and metallareceptors, the energetics of anion binding, molecular structures of anion complexes, sensing devices are presented and computational studies addressed to aid with the understanding of the different driving forces responsible for anion complexation. The reader is promised an actual picture of the state of the art for this exciting and constantly evolving field of supramolecular anion coordination chemistry. The topics range from ion channels to selective sensors, making it attractive to all researchers and PhD students with an interest in supramolecular chemistry.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: