
Electrochemical Technologies for Energy Storage and Conversion.
Title:
Electrochemical Technologies for Energy Storage and Conversion.
Author:
Zhang, Jiujun.
ISBN:
9783527640089
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (825 pages)
Contents:
Electrochemical Technologies for Energy Storage and Conversion -- Contents to Volume 1 -- Contents to Volume 2 -- Preface -- About the Editors -- List of Contributors -- 1 Electrochemical Technologies for Energy Storage and Conversion -- 1.1 Introduction -- 1.2 Global Energy Status: Demands, Challenges, and Future Perspectives -- 1.3 Driving Forces behind Clean and Sustainable Energy Sources -- 1.3.1 Local Governmental Policies as a Potential Thrust -- 1.3.2 Greenhouse Gases Emission and the Associated Climate Changes -- 1.3.3 Public Awareness about Environmental Protection Rose around the World -- 1.3.4 Population Growth and Industrialization -- 1.3.5 Security and Safety Concerns Arising from Scarcity of Resources -- 1.3.6 Platforms Advocating in Favor of Sustainable and Renewable Resources -- 1.3.7 Economic Risk Generated from Price Pressure of Natural Resources -- 1.3.8 Regulatory Risk from Governmental Action and Legislation -- 1.3.9 Fear of Reputational Risk to Strengthen Corporate Social Responsibility -- 1.3.10 Operational and Supply Chain Risks from Inefficiencies and Environmental Changes -- 1.4 Green and Sustainable Energy Sources and Their Conversion: Hydro, Biomass, Wind, Solar, Geothermal, and Biofuel -- 1.4.1 Solar PV Plants -- 1.4.2 Wind Power -- 1.4.3 Geothermal Power -- 1.4.4 Concentrating Solar Thermal Power (CSP) Plants -- 1.4.5 Biomass -- 1.4.6 Biofuel -- 1.5 Electrochemistry: a Technological Overview -- 1.6 Electrochemical Rechargeable Batteries and Supercapacitors (Li Ion Batteries, Lead-Acid Batteries, NiMH Batteries, Zinc-Air Batteries, Liquid Redox Batteries) -- 1.6.1 Lead-Acid Batteries -- 1.6.2 NiMH Batteries -- 1.6.3 Li-Ion Batteries -- 1.6.4 Zinc-Air Batteries -- 1.6.5 Liquid Redox Batteries.
1.7 Light Fuel Generation and Storage: Water Electrolysis, Chloro-Alkaline Electrolysis, Photoelectrochemical and Photocatalytic H2 Generation, and Electroreduction of CO2 -- 1.7.1 Water Electrolysis -- 1.7.2 Electrochemistry of Water Splitting -- 1.7.3 Chlor-Alkaline Electrolysis -- 1.7.4 Photoelectrochemical and Photocatalytic H2 Generation -- 1.7.5 Carbon Dioxide Reduction -- 1.8 Fuel Cells: Fundamentals to Systems (Phosphoric Acid Fuel Cells, PEM Fuel Cells, Direct Methanol Fuel Cells, Molten Carbon Fuel Cells, and Solid Oxide Fuel Cells) -- 1.8.1 Alkaline Fuel Cells -- 1.8.2 Direct Methanol Fuel Cells -- 1.8.3 Phosphoric Acid Fuel Cells (PAFCs) -- 1.8.4 Proton Exchange Membrane Fuel Cells -- 1.8.5 High-Temperature Molten Carbonate Fuel Cells -- 1.8.6 Solid Oxide Fuel Cells -- 1.9 Summary -- Acknowledgments -- References -- Further Reading -- 2 Electrochemical Engineering Fundamentals -- 2.1 Electrical Current/Voltage, Faraday's Laws, Electric Efficiency, and Mass Balance -- 2.1.1 Current Efficiency -- 2.1.2 Mass Balance -- 2.2 Electrode Potentials and Electrode-Electrolyte Interfaces -- 2.2.1 Potential Difference -- 2.2.2 Electrode-Electrolyte Interfaces -- 2.3 Electrode Kinetics (Charger Transfer (Butler-Volmer Equation) and Mass Transfer (Diffusion Laws)) -- 2.3.1 Limitations of Butler-Volmer Equation -- 2.4 Porous Electrode Theory (Kinetic and Diffusion) -- 2.4.1 Theories of Porous Electrode -- 2.4.1.1 The Single-Pore Model -- 2.4.1.2 The Macrohomogeneous Model -- 2.5 Structure, Design, and Fabrication of Electrochemical Devices -- 2.5.1 Major Types of Hydrogen-Oxygen Fuel Cells -- 2.5.2 Designing Electrochemical Devices -- 2.5.3 Some Structural Aspects of Electrochemical Devices -- 2.5.4 Fabrication Principles of Fuel Cells -- 2.5.5 Fabrication Principles of Batteries -- 2.5.6 Fabrication Principles of Supercapacitors.
2.6 Nanomaterials in Electrochemical Applications -- 2.6.1 Carbon Nanostructures -- 2.6.2 Inorganic Nanostructures -- 2.6.3 Carbon-Inorganic Nanocomposites -- 2.6.4 Conducting Polymer Nanostructures -- 2.6.5 Application of Nanomaterials Lead to Emerging Devices -- References -- 3 Lithium Ion Rechargeable Batteries -- 3.1 Introduction -- 3.2 Main Types and Structures of Li Ion Rechargeable Batteries -- 3.2.1 Structure of Wound Li Ion Cells -- 3.2.2 Structure of Flat-Plate Prismatic Li-Ion Batteries -- 3.3 Electrochemical Processes in Li Ion Rechargeable Batteries -- 3.4 Battery Components (Anode, Cathode, Separator, Endplates, and Current Collector) -- 3.4.1 Anode -- 3.4.1.1 Carbon Anode Materials -- 3.4.1.2 Noncarbonaceous Anode Materials -- 3.4.2 Cathode -- 3.4.2.1 LiCoO2 -- 3.4.2.2 LiNiO2 -- 3.4.2.3 LiMnO2 -- 3.4.2.4 LiFePO4 -- 3.4.3 Separator -- 3.4.4 Current Collector -- 3.5 Assembly, Stacking, and Manufacturing of Li Ion Rechargeable Batteries -- 3.5.1 Electrode Manufacturing -- 3.5.1.1 Cathode Materials -- 3.5.1.2 Anode Materials -- 3.5.1.3 Mixing -- 3.5.1.4 Coating -- 3.5.1.5 Drying -- 3.5.2 Assembling Process -- 3.5.2.1 Core Construction -- 3.5.2.2 Welding -- 3.5.2.3 Injecting -- 3.5.2.4 Sealing -- 3.5.3 Formation and Aging -- 3.6 Li Ion Battery Performance, Testing, and Diagnosis -- 3.6.1 Characteristics of Energy -- 3.6.1.1 Specific Energy of Cathode Materials -- 3.6.1.2 Specific Energy of Anode Materials -- 3.6.2 Working Characteristics -- 3.6.2.1 Discharge Rate Capability -- 3.6.2.2 Cycle Life -- 3.6.2.3 Storage Performance -- 3.6.2.4 Temperature Effects on Performance -- 3.6.3 Test and Evaluation of Li Battery Materials -- 3.7 Degradation Mechanisms and Mitigation Strategies -- 3.7.1 Degradation Mechanisms -- 3.7.1.1 The Effect of Anode Materials -- 3.7.1.2 The Effect of Cathode Materials -- 3.7.1.3 The Effect of Electrolyte.
3.7.1.4 The Effect of Charging and Discharging States -- 3.7.1.5 The Effect of Current Collector -- 3.7.2 Mitigation Strategies -- 3.7.2.1 The Surface Treatment -- 3.7.2.2 Replacement of LiPF6 by Salts and the Use of Additives -- 3.7.2.3 Developing a New System of Electrolyte -- 3.8 Current and Potential Applications of Secondary Li Ion Batteries -- 3.8.1 Portable Electronic Devices -- 3.8.2 Applications of Lithium Ion Batteries in Electric Vehicle (EV) Industry -- 3.8.3 Application Prospect of Lithium Ion Battery in the Aerospace Industry -- 3.8.4 As Energy Reserves -- 3.8.5 Application of Military Equipment -- References -- 4 Lead-Acid Battery -- 4.1 General Characteristics and Chemical/Electrochemical Processes in a Lead-Acid Battery -- 4.1.1 General Characteristics -- 4.1.2 Major Milestones in the Development of the Lead-Acid Battery -- 4.1.2.1 Chemistry/Electrochemistry -- 4.2 Battery Components (Anode, Cathode, Separator, Endplates (Current Collector), and Sealing) -- 4.2.1 Battery Grid (Current Collector) -- 4.2.2 Active Material -- 4.2.2.1 Lead Oxide -- 4.2.2.2 Positive Active Material (Cathode Paste) -- 4.2.2.3 Negative Active Material (Anode Paste) -- 4.2.3 Electrolyte -- 4.2.4 Paste Production -- 4.2.5 Pasting -- 4.2.6 Curing -- 4.2.7 Formation -- 4.2.7.1 Tank Formation -- 4.2.7.2 Case Formation -- 4.2.8 Separator -- 4.2.9 Assembly -- 4.2.10 Case to Cover Seal -- 4.3 Main Types and Structures of Lead-Acid Batteries -- 4.3.1 SLI Batteries -- 4.3.2 Deep Cycle and Traction Batteries -- 4.3.3 Stationary Battery -- 4.3.4 VRLA Battery -- 4.4 Charging Lead-Acid Battery -- 4.5 Maintenance and Failure Mode of a Lead-Acid Battery -- 4.5.1 Maintenance -- 4.5.2 Safety -- 4.5.3 Failure Mode of Lead-Acid Battery -- 4.6 Advanced Lead-Acid Battery Technology -- 4.6.1 Negative Current Collector Improvement -- 4.6.1.1 Ultrabattery.
4.6.1.2 PbC Capacitor Battery -- 4.6.1.3 Firefly Oasis Battery -- 4.6.2 Current Collector Improvement -- 4.6.2.1 Lead-Alloy-Coated, Reticulated Carbon Current Collectors -- 4.6.2.2 Lead-Alloy-Coated Polymer Current Collectors -- 4.6.3 Battery Construction -- 4.6.3.1 Horizon Battery -- 4.6.3.2 Bipolar Battery -- 4.6.4 Electrolyte Improvement -- 4.6.4.1 Gel Silicon Electrolyte -- 4.6.4.2 Liquid Low Sodium Silicate Electrolyte -- 4.7 Lead-Acid Battery Market -- 4.7.1 Automotive (Transportation and Recreation, Original Equipment Manufacturer (OEM) and Replacement) -- 4.7.1.1 SLI Battery (Starting, Lighting, and Ignition) -- 4.7.1.2 Deep Cycle Battery (E-Bike/Marine/Recreational Vehicle/Motor Home) -- 4.7.1.3 Microhybrid -- 4.7.2 Industrial -- 4.7.2.1 Motive (Industrial Trucks, Fork Lifts, Golf Carts, etc.) -- 4.7.2.2 Stationary (Utility/Switchgear, Telecommunication, Uninterruptible Power Systems (UPS), Emergency Lighting, Security Systems, Renewable Energy Systems, Cable Television/Broadcasting, Oil and Gas Exploration, Railway Backup, etc.) -- 4.7.2.3 Emerging Grid Applications -- 4.7.2.4 Distributed Renewable -- References -- Further Reading -- 5 Nickel-Metal Hydride (Ni-MH) Rechargeable Batteries -- 5.1 Introduction to NiMH Rechargeable Batteries -- 5.2 Electrochemical Processes in Rechargeable Ni-MH Batteries -- 5.3 Battery Components -- 5.3.1 Anode -- 5.3.1.1 Properties of Hydrogen Storage Alloys -- 5.3.1.2 The Classification of Hydrogen Storage Alloys -- 5.3.1.3 Alloy Preparation -- 5.3.2 Cathode -- 5.3.2.1 Preparation of Ni(OH)2 -- 5.3.3 Separator -- 5.3.3.1 Preparation of Separators -- 5.3.4 Electrolyte -- 5.3.5 Endplates -- 5.3.5.1 Conductive Agent -- 5.3.5.2 Adhesives -- 5.3.6 Cost Distributions for the Components of Ni-MH Batteries -- 5.4 Assembly, Stacking, Configuration, and Manufacturing of Rechargeable Ni-MH Batteries.
5.4.1 Electrode Preparation.
Abstract:
In this handbook and ready reference, editors and authors from academia and industry share their in-depth knowledge of known and novel materials, devices and technologies with the reader. The result is a comprehensive overview of electrochemical energy and conversion methods, including batteries, fuel cells, supercapacitors, hydrogen generation and storage as well as solar energy conversion. Each chapter addresses electrochemical processes, materials, components, degradation mechanisms, device assembly and manufacturing, while also discussing the challenges and perspectives for each energy storage device in question. In addition, two introductory chapters acquaint readers with the fundamentals of energy storage and conversion, and with the general engineering aspects of electrochemical devices. With its uniformly structured, self-contained chapters, this is ideal reading for entrants to the field as well as experienced researchers.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View