
In-Situ Synthesis of Polymer Nanocomposites.
Title:
In-Situ Synthesis of Polymer Nanocomposites.
Author:
Mittal, Vikas.
ISBN:
9783527640126
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (420 pages)
Series:
Polymer Nano-, Micro- and Macrocomposites Ser.
Contents:
In-situ Synthesis of Polymer Nanocomposites -- Contents -- Preface -- List of Contributors -- 1: In-situ Synthesis of Polymer Nanocomposites -- 1.1 Introduction -- 1.2 Synthesis Methods -- 1.3 In-situ Synthesis of Polymer Nanocomposites -- References -- 2: Polyamide Nanocomposites by In-situ Polymerization -- 2.1 Introduction -- 2.2 Manufacturing Processes of Commercially Important Polyamides -- 2.2.1 Poly(caproamide) (PA 6) -- 2.2.2 Poly(hexamethylene adipamide) (PA 6.6) -- 2.2.3 Low-Temperature Polymerization Processes -- 2.3 Polyamide Nanocomposites -- 2.3.1 Introduction -- 2.3.2 Lactam/Amino Acid-Based In-situ Intercalated PA Nanocomposites -- 2.3.3 Diamine- and Diacid-Based In-situ Intercalated PA Nanocomposites -- 2.3.3.1 Solution-Melt Polymerization Technique -- 2.3.3.2 Anhydrous Melt Polymerization Technique -- 2.3.3.3 Direct SSP Technique -- 2.3.3.4 Interfacial Polycondensation Technique -- 2.4 Conclusions -- References -- 3: Polyolefin-Clay Nanocomposites by In-situ Polymerization -- 3.1 Introduction -- 3.2 Clays -- 3.2.1 General Structure -- 3.2.2 Smectites -- 3.2.3 Clay Particle Morphological Hierarchy -- 3.2.4 Clay Chemical Reactions -- 3.2.4.1 Cation Exchange Reactions -- 3.2.4.2 Interaction with Organic Compounds -- 3.3 In-situ Polymerization of Olefins with Coordination Catalysts Supported on Clays -- 3.3.1 Olefin Polymerization with Coordination Catalysts -- 3.3.2 Polymerization Mechanism with Coordination Catalysts -- 3.3.3 Coordination Catalysts for in In-situ Polymerization -- 3.3.4 Catalyst Supporting -- 3.3.4.1 Catalyst Supporting Methods -- 3.3.5 Clay Surface Modification Methods for In-situ Polymerization -- 3.3.5.1 Organic Modification -- 3.3.5.2 Thermal Treatment -- 3.3.5.3 Treatment with Alkylaluminum Compounds -- 3.3.6 Particle Break-Up and Exfoliation -- 3.3.7 In-situ Polymerization Approaches.
3.3.7.1 Clay as a Polymerization Additive -- 3.3.7.2 Clay as a Polymerization Catalyst Support -- 3.3.7.3 Clay as an Activator for Polymerization Catalysts -- 3.3.7.4 In-situ Production of Alkylaluminoxanes -- 3.3.7.5 Other Techniques -- 3.3.8 Factors Determining the Success of In-situ Polymerization -- 3.3.8.1 Clay Type -- 3.3.8.2 Swellability -- 3.3.8.3 Effect of Clay Surface Treatment -- 3.3.8.4 Catalyst : Clay Ratio -- 3.3.8.5 Effect of Polymerization Conditions -- 3.3.9 Clay Effect on the Polymerization Behavior and Polymer Molecular Structure -- 3.3.10 Future Approaches -- References -- 4: Gas-Phase-Assisted Surface Polymerization and Thereby Preparation of Polymer Nanocomposites -- 4.1 Introduction -- 4.2 In-situ Polymerization for Nanocomposite Preparation -- 4.3 Characteristics of GASP -- 4.3.1 Thin Layer Coating of Solid-Substrate Surfaces -- 4.3.2 Physically Controlled Polymerization Behavior -- 4.3.3 Photo-Induced Controlled Polymerization -- 4.4 Composite Preparation by GASP -- 4.4.1 Polymer/Clay Nanocomposites -- 4.4.2 Polymer/Inorganic Compound (Nano)composites -- 4.4.3 Polymer/Cellulose Fiber (Nano)composites -- 4.4.4 Polymer/Carbon Nanotube (Nano)composites -- 4.5 Outlook and Perspective -- Abbreviations -- References -- 5: PET Clay Nanocomposites by In-situ Polymerization -- 5.1 Introduction -- 5.2 Preparation of PET/Clay Nanocomposites -- 5.3 Morphology of the Nanocomposites -- 5.4 Crystallization of the Nanocomposites -- 5.5 Properties of the Nanocomposites -- 5.5.1 Thermal Properties -- 5.5.2 Mechanical Properties -- 5.5.3 Barrier Properties -- 5.6 Conclusion and Outlook -- References -- 6: Control of Filler Phase Dispersion in Bio-Based Nanocomposites by In-situ Reactive Polymerization -- 6.1 Introduction -- 6.2 Background -- 6.2.1 Polymer Matrix Nanocomposites -- 6.2.1.1 Cellulose Whisker Nanocomposites.
6.2.1.2 Layered Silicate Nanocomposites -- 6.2.2 Reactive Molding Techniques for Composite Manufacture -- 6.2.2.1 Materials and Methods for Reactive Molding of Nanocomposites -- 6.2.2.2 Furfuryl Alcohol as a Precursor for Polymer Matrix Composites -- 6.3 Experimental Procedures -- 6.3.1 Reactive Molding of Cellulose Whisker Nanocomposites -- 6.3.1.1 Conceptual Approach -- 6.3.1.2 Preparation of CW -- 6.3.1.3 Resinification of FA with CW -- 6.3.1.4 Curing of CW-PFA Composites -- 6.3.1.5 Characterization Techniques -- 6.3.2 Reactive Molding of MMT Nanocomposites -- 6.3.2.1 Conceptual Approach -- 6.3.2.2 Types of MMT Clays Used -- 6.3.2.3 Resinification of FA with MMT Clay -- 6.3.2.4 Curing of MMT-PFA Composites -- 6.3.2.5 Characterization Techniques -- 6.4 Results and Discussion -- 6.4.1 Reactive Molding of Cellulose Whisker Nanocomposites -- 6.4.1.1 Morphology of CW -- 6.4.1.2 Resinification of FA in the Presence of CWs -- 6.4.1.3 Thermal Resistance of CW-FA Nanocomposites -- 6.4.2 Reactive Molding of MMT Nanocomposites -- 6.4.2.1 Morphology of MMT Clay -- 6.4.2.2 Resinification of FA in the Presence of MMT Clay -- 6.4.2.3 Thermal Resistance of MMT-FA Nanocomposites -- 6.5 Conclusions -- Abbreviations -- Acknowledgments -- References -- 7: Polyurethane Nanocomposites by In-situ Polymerization Approach and Their Properties -- 7.1 Introduction -- 7.2 PU/Carbon Nanotube Nanocomposites (PUCNs) -- 7.2.1 Fabrication -- 7.2.2 Morphology and Characterizations of PUCNs -- 7.2.3 Physical Properties of PUCNs -- 7.3 PU/Clay Nanocomposites (PUCLN) -- 7.3.1 Fabrication -- 7.3.1.1 Exfoliation and Intercalation of Nanoclays in PU Matrix -- 7.3.1.2 Rheological Behavior of Polyol-Nanoclay Mixture -- 7.3.2 Morphology and Characterization -- 7.3.3 Physical Properties -- 7.3.3.1 Mechanical Properties -- 7.3.3.2 Scratch Resistance and Barrier Performance.
7.3.3.3 Thermal Stability and Flame Retardancy -- 7.4 PU/Functionalized Graphene Nanocomposites (PUFGNs) -- 7.4.1 Fabrication -- 7.4.2 Morphology and Characterization -- 7.4.3 Physical Properties -- 7.5 Prospective of PUNs -- References -- 8: In-situ Synthesis and Properties of Epoxy Nanocomposites -- 8.1 Introduction -- 8.2 Optimization of the Curing Conditions -- 8.3 Fillers, Surface Modifications, and Ion Exchange -- 8.4 Nanocomposite Synthesis -- 8.5 Morphology -- 8.6 Barrier Properties -- 8.7 Effect of Excess Surface Modification Molecules -- References -- 9: Unsaturated Polyester-Montmorillonite Nanocomposites by In-situ Polymerization -- 9.1 Introduction -- 9.2 Nanocomposites with MMT Introduced into UP Prepolymer or Resin -- 9.2.1 Synthesis, Morphology, and Mechanical Properties -- 9.2.2 Rheology and Cure Properties -- 9.2.3 Flammability -- 9.2.4 Mixed-Resin and Filler Systems -- 9.3 Nanocomposites with MMT Introduced during the Synthesis of Prepolymer -- 9.4 Conclusions -- References -- 10: Polymer Clay Nanocomposites by In-situ Atom Transfer Radical Polymerization -- References -- 11: Polybutadiene Clay Nanocomposites by In-situ Polymerization -- 11.1 Introduction -- 11.2 Generalities -- 11.2.1 Clays -- 11.2.2 Polymer Nanocomposite Structures -- 11.2.3 Methods of Preparation of Polymer Nanocomposites -- 11.3 Polybutadiene Nanocomposites -- 11.3.1 1,3-Butadiene Polymerization Methods -- 11.3.2 In-situ Anionic Polymerization -- 11.3.3 In-situ Stereospecific Polymerization -- 11.4 Conclusions and Perspectives -- Abbreviations -- References -- 12: P3HT-MWNT Nanocomposites by In-situ Polymerization and Their Properties -- 12.1 Introduction -- 12.2 Multiwall CNTs -- 12.3 In-situ Synthesis of P3HT-MWNT Composites -- 12.4 The Properties and Characterization of P3HT-MWNT Nanocomposites.
12.4.1 The Dispersion and Morphology of the P3HT-MWNT Nanocomposites -- 12.4.2 HT Regioregularity -- 12.4.3 Mechanical Properties -- 12.4.4 Thermal Stability -- 12.4.5 Optical Properties -- 12.4.6 Charge Transportability -- 12.5 Conclusion and Outlook -- References -- 13: Polystyrene-Montmorillonite Nanocomposites by In-situ Polymerization and Their Properties -- 13.1 Introduction -- 13.2 Morphology of Polymer-Clay Nanocomposites -- 13.3 Modification of MMT -- 13.3.1 NonReactive Modifications -- 13.3.2 Reactive Modifications -- 13.3.3 Polymeric Initiator-Based Modifications -- 13.4 In-situ Polymerization Methods -- 13.4.1 Free Radical Polymerization Techniques -- 13.4.1.1 Bulk Polymerization -- 13.4.1.2 Emulsion Polymerization -- 13.4.1.3 Solution Polymerization -- 13.4.2 Controlled Polymerization Techniques -- 13.4.2.1 Atom Transfer Radical Polymerization -- 13.4.2.2 Reverse Addition-Fragmentation Transfer -- 13.4.2.3 Nitroxide-Mediated Polymerization -- 13.4.3 Dispersion of MMT in Styrene -- 13.5 Properties of PS-MMT Nanocomposites Prepared via In-situ Techniques -- 13.5.1 Mechanical Properties -- 13.5.1.1 Tensile -- 13.5.1.2 Impact and Flexural Properties -- 13.5.1.3 Dynamic Mechanical Thermal Analysis -- 13.5.1.4 Rheological Properties -- 13.5.1.5 Barrier Properties -- 13.5.2 Thermal Properties -- 13.5.2.1 Thermal Gravimetric Analysis -- 13.5.2.2 Dynamic Scanning Calorimetry (DSC) -- 13.5.2.3 Fire Performance -- 13.6 Summary -- References -- 14: Aliphatic Polyester and Poly(ester amide) Clay Nanocomposites by In-situ Polymerization -- 14.1 Introduction: Biodegradable Polymers and Their Nanocomposites -- 14.2 Aliphatic Polyester Clay Nanocomposites by In-situ Polymerization -- 14.2.1 Poly(ε-Caprolactone)-Based Nanocomposites -- 14.2.2 Polylactide-Based Nanocomposites -- 14.2.3 PBS-Based Nanocomposites -- 14.2.4 PPDO-Based Nanocomposites.
14.3 PEAs Clay Nanocomposites by In-situ Polymerization.
Abstract:
The book series "Polymer Nano-, Micro- and Macrocomposites" provides complete and comprehensive information on all important aspects of polymer composite research and development, including, but not limited to synthesis, filler modification, modeling, characterization as well as application and commercialization issues. Each book focuses on a particular topic and gives a balanced in-depth overview of the respective subfi eld of polymer composite science and its relation to industrial applications. With the books the readers obtain dedicated resources with information relevant to their research, thereby helping to save time and money. In-situ intercalative polymerization in the presence of filler provides distinct advantages when compared to other nanocomposite synthesis techniques including the possibility to polymerize a large range of thermoplastic and thermosetting polymers, improved handling of gaseous or liquid monomers or high pressure polymerization and improved control of heat of polymerization. This volume aims to highlight these advantages of the generation of polymer nanocomposites with a large spectrum of polymer matrices. Following an overview of the synthesis methodologies, the text goes on to discuss the most relevant polymer materials, including polyamides, polyolefi nes, polyacrylates, polyethylenes, polyurethanes, polyesters and polyepoxides.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View